Introduction to Machine Learning - C5725
Instructor: Prof. Ganesh Ramakrishnan

Lecture 14 -Non-Parametric Regression, Algorithms for Optimizing
SVR and Lasso



Kernels in SVR
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@ Recall:

maxa, ar — 3 325 2(0i — of) (e — af )K(xi, %)) — € 32 (evi + of) + 35, yilvi — o)

such that ) (o —af) =0, aj,af € [0, C] and the decision functlon a‘ e
f(x):Z(a,—a*)K(X,, )+b fjs(}ﬁ) K('X zl)a(‘d‘) '77-
are all in terms of the kernel K(x;,x;) only

@ One can now employ any mercer kerne/nSﬁor Rldge Regression to /mpIICItly
perform linear regression in higher dimensional spaces

@ Check out applet at https://www.csie.ntu.edu.tw/~cjlin/libsvm/ to see
the effect of non-linear kernels in SVR Dﬂmm!\ kune\&
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Basis function expansion & Kernel: Part 1

P
Consider regression function f(x) = Z w;¢;(x) with weight vector w estimated as

=1 +b

Wpe, = argmin L(p, w,y) + AQ(w) T

W St Huares i \ \\
It can be shown that for p € [0, 00), under certain conditions on K, the following can
be equivalent representations

°

100 =2 w0+ Romal TepT
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e And S
esen’(a*“

f(x) = Z aiK(x, x;) .‘Du.a\ "fenrr
i=1

e For what kind of regularizers Q(w), loss functions £(¢,w,y) and p € [0, c0) will
i old?!

1Section 5.8.1 of Tibshi.



Basis function expansion & Kernel: Part 2
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A A non-parametric kernel k, is a non-negative real-valued integrable functlon
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Basis function expansion & Kernel: Part 2

e We could also begin with (Eg: Nadaraya\Watson kernel regression)

m m (m»i)
N K ) 2o Yikn([[x = i)l 5. gckn
_; iK(x,x;)= ST (X — %) }Z/ an(i’i

A non-parametric kernel k, is a non-negative real-valued integrable functlon
+o0

satisfying the following two requirements: / kn(u)du =1 and kp(—u) = kp(u)
for all values of u -

E.g.: kn(xig— x) = I(||xie— x[| < |[x(k) — x[§) where x(,) is the training observation
ranked k" in distance from x and /(S) is the indicator of the set S

This is precisely the Nearest Neighbor Regression model;/g(fx) =09 ujﬁ 3;’5 o? (S
Kernel regression and density models are other examples of such local regression
methods?

The broader class - Non-Parametric Regression: y = g(x) + € where functional

form of g(x) is not fixed We

2Section 2.8.2 of Tibshi
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Non-parametric Kernel weighted regression (Local Linear Regression): Tut

5, Prob 3

’

Given D = {(X1,%1)s- -+ (Xi ¥i)s - - - » (Xny ¥n) }, predict £(x') = (w' " ¢(x') + b) for each
test (or query point) x” as:

n

. / 2
(w,b') = arérEm; K(x', ;) (Yi — (w'o(x) + b))

@ |If there is a closed form expression for (w’, b') and therefore for f(x’) in terms of
the known quantities, derive it.

@ How does this model compare with linear regression and k—nearest neighbor
regression? What are the relative advantages and disadvantages of this model?

@ In the one dimensional case (that is when ¢(x) € R), graphically try and interpret
what this regression model would look like, say when K(.,.) is the linear kernel3.

3Hint: What would the regression function look like at each training data point?



Answer to Question 1

The weighing factor rX’ of each training data point (x;, y;) is now also a function of the

query or test data point (X', ?), so that we write it as r¥’ = K(x',x;) for i =1,...,m.
Let r,)j,/H =1 and let R be an (m+ 1) x (m + 1) diagonal matrix of r¥, X ,..., r,’j,’H.

0 .0

0 K .. 0

R = 2
1

0 0 0 X

Further, let

and



Answer to Question 1 (contd.)

w1
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and

n

y=1..
Ym

The sum-square error function then becomes

1. = S
ri(yi = (W7 () + b))* = 5[|VRy — VROW|[3
1 —_/\/—

]

where v/R is a diagonal matrix such that each diagonal element of /R is the square
root of the corresponding element of R.

m



Answer to Question 1 (contd.)

The sum-square error function:
1 & 1. = -
5 > nilyi — (WTo(x) + b))* = EH\/RY — VRow|}3

This convex function has a global minimum at W' such that
Wl = (¢TRo) o7 Ry

This is referred to as local linear regression (Section 6.1.1 of Tibshi).




Answer to Question 2
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@ Local linear regression gives more importance (than linear regressmn) to points in
D that are closer/similar to x’ and less importance to points that are less similar.

@ Important if the regression curve is supposed to take different shapes in different
parts of the space.

© Local linear regression comes close to k-nearest neighbor. But unlike k-nearest
neighbor, local linear regression gives you a smooth solution g
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Answer to Question 3
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Solving the SVR Dual Optimization Problem

@ The SVR dual objective is:
maxa, or — 3 Y_; (@i — af) () — af)K(x;, %)
—ey (ai+af) + >, vi(aj — aF) such that ) (a; —af) =0, aj, af € [0, C]

@ This is a linearly constrained quadratic program (LCQP), just like the constrained
version of Lasso

@ There exists no closed form solution to this formulation

e Standard QP (LCQP) solvers? can be used

@ Question: Are there more specific and efficient algorithms for solving SVR in this
form?

*https://en.wikipedia.org/wiki/Quadratic_programming#Solvers_and_scripting_
.28programming.29_languages



Sequential Minimial Optimization Algorithm for Solving SVR



Solving the SVR Dual Optimization Problem

It can be shown that the objective:
Maxa,ar — 3 5 52,01 — af)(ag — a)K(x,%) e
—e (i +af) + 22, yilai — af) gc__X/ 'F
can be written as: /, _‘ak“ib
maxs, — $ 33 35 BB K (xi.x)) — €5 |81l + 32, i \V\q
s.t. 5}, 56
e >, Bi=0
o Bi€[-C,C] Vi | %3
Even for this form, standard QP (LCQP) solvers® can be used QQ-“
Question: How about (iteratively) solving for two [3;'s at a time?

e This is the idea of the Sequential Minimal Optimization (SMO) algorlthm
wat -\ 0\ h -'<Q1, ‘(Q\'LT)T"‘
p| 1

5https //en.wikipedia.org/wiki/Quadratic_ progra.mm:l.ng#Solvers and_ scrlicln _"% 4
.28programming.29_languages %’\



Sequential Minimal Optimization (SMO) for SVR

o Consider:
maxg, — 5 3. 32 BiliK (xi, x7) — €32 1Bil + X2, vibi
s.t.
o 36 =0

o Bie[-C,C| Vi
@ The SMO subroutine can be defined as:

@ Initialise f1,..., 8, to some value € [-C, C]
@ Pick 3i, 5 to estimate closed form expression for next iterate (i.e. 6”8"” ﬁ”ew)
© Check if the KKT conditions are satisfied

@ If not, choose f3; and 3, that Wthe KKT conditions and reiterate

oSk '\_
o ONEEL 55"1% o ¥ 3 S\l
i ol [ ” coneet s A




Iterative Soft Thresholding Algorithm for Solving Lasso



Lasso: Recap Midsem Problem 2
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w’ = argmin || ow — s.t. ||wl|; <n, 1

SN gmin [[ow —y| lwlly <7 (1)
& - |w

\\7 _§‘Where .
s v |3

= wlly = (3 wil) (2)
S ) i=1 ~r
€ g ® Since ||w||; is not differentiable, one can express (2) as a set of constraints ©
5 : i
,,® Zfiﬁn, wi <&, —w; < oS é?
S = = =
S @ @ The resulting problem is a linearly constrained Quadratic optimization problem ¢ .= i\

> g y :

<= €| (LcaP):
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w* = argmin|low —y||* s.t. > &<, wi <&, —w < § (3)
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Lasso: Continued

o KKT conditions:

26T )w — 26Ty + ) (6= A) =0
o \>w<\£’ wié &
s & -n=0 WiSae
eréﬂ, é/(;z—; "
¢ A i, 0,-(w,- — f,) =0 and )\,'(—W,' — 5,) =0

o Like Ridge Regression, an equivalent Lasso formulation can be shown to be:

w = argmianﬁw—sz‘i‘)\HW”l (4)
w

@ The justification for the equivalence between {2) and (4) as welhas he solution to
4) requires subgradient®. Nno~-AM (v es
(4) req g e.,);msﬂ*‘a Yook A

®https://www.cse.iitb.ac. in/~cs709/notes/'g)tes/lecture27b .pdf




lterative Soft Thresholding Algorithm (Proximal Subgradient Descent) for

Lasso

o Let e(w) = [lgw —y|3
o lIterative Soft Thresholding Algorithm:
Initialization: Find starting point w(®)
o Let w(k*1) be a next iterate for e(w*) computed using using any (gradient) descent

algorithm
o Compute w(k+1) = argmin||w — W12 4 M| |w|[; by:
w

Q 1f W™ > At, then w ™) = —xt + wY
Q 1f W™ < At, then w!*™) = At + w,(k“)
© 0 otherwise.
o Set k = k + 1, until stopping criterion is satisfied (such as no significant changes in
wk w.r.t wik—1)



(Optional) Subgradients

An equivalent condition for convexity of f(x):
¥ x,y € dmn(f), f(y) > f(x) + VT F(x)(y — x)
e g¢(x) is a subgradient for a function f at x if

vy € dmn(f), f(y) > f(x) +gr(x)" (y —x)

Any convex (even non-differentiable) function will have a subgradient at any point
in the domain!

If a convex function f is differentiable at x then V£ (x) = g¢(x)

@ x is a point of minimum of (convex) f if and only if 0 is a subgradient of f at x



(Optional) Subgradients and Lasso

e Claim (out of syllabus): If w*(n) is solution to (2) and w*(\) is solution to (4)
then
o Solution to (2) with n = ||w*(\)|| is also w*()) and
o Solution to (4) with X as solution to ¢ (¢w — y) = Mgy is also w*(n)

@ The unconstrained form for Lasso in (4) has no closed form solution

@ But it can be solved using a generalization of gradient descent called proximal
subgradient descent’

"https://www.cse.iitb.ac.in/~cs709/notes/enotes/lecture27b. pdf



(Optional) Proximal Subgradient Descent for Lasso?

o Let c(w) = [ow —y}
o Proximal Subgradient Descent Algorithm:
Initialization: Find starting point w(®)
o Let w(kt1) be a next gradient descent iterate for £(w*)
o Compute w(**1) = argmin|jw — w(k*1)||2 - \t||w||; by setting subgradient of this

w
objective to 0. This results in:
Q@ 1f ™ > At, then w ™ = At + w,
@ If @) < At, then w*™) = A¢ 4 @D
Qo0 otherW|se
o Set k = k + 1, until stopping criterion is satisfied (such as no significant changes in
wk w.r.t wik—1)

(k+1)



