Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan
Lecture 14 -Non-Parametric Regression, Algorithms for Optimizing
SVR and Lasso

#### Kernels in SVR

Recall:

$$\max_{\alpha_i,\alpha_i^*} - \frac{1}{2} \sum_i \sum_j (\alpha_i - \alpha_i^*)(\alpha_j - \alpha_j^*) K(\mathbf{x}_i, \mathbf{x}_j) - \epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i y_i (\alpha_i - \alpha_i^*)$$
 such that  $\sum_i (\alpha_i - \alpha_i^*) = 0$ ,  $\alpha_i, \alpha_i^* \in [0, C]$  and the decision function:  $f(\mathbf{x}) = \sum_i (\alpha_i - \alpha_i^*) K(\mathbf{x}_i, \mathbf{x}) + b$  are all in terms of the kernel  $K(\mathbf{x}_i, \mathbf{x}_i)$  only

- One can now employ any mercer kernel in SVR or Ridge Regression to implicitly perform linear regression in higher dimensional spaces
- Check out applet at https://www.csie.ntu.edu.tw/~cjlin/libsvm/ to see the effect of non-linear kernels in SVR

#### Basis function expansion & Kernel: Part 1

Consider regression function  $f(\mathbf{x}) = \sum_{j=1}^r w_j \phi_j(\mathbf{x})$  with weight vector  $\mathbf{w}$  estimated as

$$\mathbf{w}_{Pen} = \underset{\mathbf{w}}{\operatorname{argmin}} \ \mathcal{L}(\phi, \mathbf{w}, \mathbf{y}) + \lambda \Omega(\mathbf{w})$$

It can be shown that for  $p \in [0, \infty)$ , under certain conditions on K, the following can be equivalent representations

•

$$f(\mathbf{x}) = \sum_{j=1}^{p} w_j \phi_j(\mathbf{x})$$

And

$$f(\mathbf{x}) = \sum_{i=1}^{m} \alpha_i K(\mathbf{x}, \mathbf{x}_i)$$

• For what kind of regularizers  $\Omega(\mathbf{w})$ , loss functions  $\mathcal{L}(\phi, \mathbf{w}, \mathbf{y})$  and  $p \in [0, \infty)$  will these dual representations hold?<sup>1</sup>



<sup>&</sup>lt;sup>1</sup>Section 5.8.1 of Tibshi.

#### Basis function expansion & Kernel: Part 2

We could also begin with (Eg: NadarayaWatson kernel regression)

$$f(\mathbf{x}) = \sum_{i=1}^{m} \alpha_i K(\mathbf{x}, \mathbf{x}_i) = \frac{\sum_{i=1}^{m} y_i k_n(||\mathbf{x} - \mathbf{x}_i||)}{\sum_{i=1}^{m} k_n(||\mathbf{x} - \mathbf{x}_i||)}$$

A non-parametric kernel  $k_n$  is a non-negative real-valued integrable function satisfying the following two requirements:  $\int_{-\infty}^{+\infty} k_n(u) du = 1$  and  $k_n(-u) = k_n(u)$  for all values of u

#### Basis function expansion & Kernel: Part 2

We could also begin with (Eg: NadarayaWatson kernel regression)

$$f(\mathbf{x}) = \sum_{i=1}^{m} \alpha_i K(\mathbf{x}, \mathbf{x}_i) = \frac{\sum_{i=1}^{m} y_i k_n(||\mathbf{x} - \mathbf{x}_i||)}{\sum_{i=1}^{m} k_n(||\mathbf{x} - \mathbf{x}_i||)}$$

A non-parametric kernel  $k_n$  is a non-negative real-valued integrable function satisfying the following two requirements:  $\int_{-\infty}^{+\infty} k_n(u) du = 1$  and  $k_n(-u) = k_n(u)$  for all values of u

- E.g.:  $k_n(x_i x) = I(||x_i x|| \le ||x_{(k)} x||)$  where  $x_{(k)}$  is the training observation ranked  $k^{th}$  in distance from x and I(S) is the indicator of the set S
- This is precisely the Nearest Neighbor Regression model
- Kernel regression and density models are other examples of such local regression methods<sup>2</sup>
- The broader class Non-Parametric Regression:  $y = g(\mathbf{x}) + \epsilon$  where functional form of  $g(\mathbf{x})$  is not fixed



<sup>&</sup>lt;sup>2</sup>Section 2.8.2 of Tibshi

Given  $\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_i, y_i), \dots, (\mathbf{x}_n, y_n)\}$ , predict  $f(\mathbf{x}') = (\mathbf{w}'^{\top} \phi(\mathbf{x}') + b)$  for each test (or query point)  $\mathbf{x}'$  as:

$$(\mathbf{w}',b') = \underset{\mathbf{w},b}{\operatorname{argmin}} \sum_{i=1}^{n} K(\mathbf{x}',\mathbf{x}_i) \left( y_i - (\mathbf{w}^{\top}\phi(x_i) + b) \right)^2$$

- If there is a closed form expression for  $(\mathbf{w}', b')$  and therefore for f(x') in terms of the known quantities, derive it.
- ② How does this model compare with linear regression and k-nearest neighbor regression? What are the relative advantages and disadvantages of this model?
- **③** In the one dimensional case (that is when  $\phi(x) \in \Re$ ), graphically try and interpret what this regression model would look like, say when K(.,.) is the linear kernel<sup>3</sup>.

#### Answer to Question 1

The weighing factor  $r_i^{x'}$  of each training data point  $(\mathbf{x}_i, y_i)$  is now also a function of the query or test data point  $(\mathbf{x}',?)$ , so that we write it as  $r_i^{x'} = K(\mathbf{x}',\mathbf{x}_i)$  for  $i=1,\ldots,m$ . Let  $r_{m+1}^{x'} = 1$  and let R be an  $(m+1) \times (m+1)$  diagonal matrix of  $r_1^{x'}, r_2^{x'}, \ldots, r_{m+1}^{x'}$ .

$$R = \begin{bmatrix} r_1^{x'} & 0 & \dots & 0 \\ 0 & r_2^{x'} & \dots & 0 \\ \dots & \dots & \dots & \dots & 1 \\ 0 & 0 & 0 & \dots & r_{m+1}^{x'} \end{bmatrix}$$

Further, let

$$\Phi = \begin{bmatrix} \phi_1(x_1) & \dots & \phi_p(x_1) & 1 \\ \dots & \dots & \dots & 1 \\ \phi_1(x_m) & \dots & \phi_p(x_m) & 1 \end{bmatrix}$$

and

## Answer to Question 1 (contd.)

$$\widehat{\mathbf{w}} = egin{bmatrix} w_1 \ ... \ w_p \ b \end{bmatrix}$$

and

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \dots \\ y_m \end{bmatrix}$$

The sum-square error function then becomes

$$\frac{1}{2}\sum_{i=1}^{m}r_{i}(y_{i}-(\widehat{\mathbf{w}}^{T}\phi(x_{i})+b))^{2}=\frac{1}{2}||\sqrt{R}\mathbf{y}-\sqrt{R}\Phi\widehat{\mathbf{w}}||_{2}^{2}$$

where  $\sqrt{R}$  is a diagonal matrix such that each diagonal element of  $\sqrt{R}$  is the square root of the corresponding element of R.

#### Answer to Question 1 (contd.)

The sum-square error function:

$$\frac{1}{2} \sum_{i=1}^{m} r_i (y_i - (\widehat{\mathbf{w}}^T \phi(x_i) + b))^2 = \frac{1}{2} ||\sqrt{R} \mathbf{y} - \sqrt{R} \Phi \widehat{\mathbf{w}}||_2^2$$

This convex function has a global minimum at  $\widehat{\mathbf{w}}_*^{\mathbf{x}'}$  such that

$$\widehat{\boldsymbol{w}}_{*}^{x'} = (\Phi^{T} R \Phi)^{-1} \Phi^{T} R \boldsymbol{y}$$

This is referred to as local linear regression (Section 6.1.1 of Tibshi).

#### Answer to Question 2

- Local linear regression gives more importance (than linear regression) to points in  $\mathcal{D}$  that are closer/similar to  $\mathbf{x}'$  and less importance to points that are less similar.
- Important if the regression curve is supposed to take different shapes in different parts of the space.
- Solution
  Local linear regression comes close to k-nearest neighbor. But unlike k-nearest neighbor, local linear regression gives you a smooth solution

#### Answer to Question 3



## Solving the SVR Dual Optimization Problem

The SVR dual objective is:

$$\max_{\alpha_i,\alpha_i^*} -\frac{1}{2} \sum_i \sum_j (\alpha_i - \alpha_i^*)(\alpha_j - \alpha_j^*) K(x_i, x_j) \\ -\epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i y_i (\alpha_i - \alpha_i^*) \text{ such that } \sum_i (\alpha_i - \alpha_i^*) = 0, \ \alpha_i, \alpha_i^* \in [0, C]$$

- This is a linearly constrained quadratic program (LCQP), just like the constrained version of Lasso
- There exists no closed form solution to this formulation
- Standard QP (LCQP) solvers<sup>4</sup> can be used
- Question: Are there more specific and efficient algorithms for solving SVR in this form?



<sup>4</sup>https://en.wikipedia.org/wiki/Quadratic\_programming#Solvers\_and\_scripting\_

<sup>.28</sup>programming.29\_languages

Sequential Minimial Optimization Algorithm for Solving SVR

## Solving the SVR Dual Optimization Problem

• It can be shown that the objective:

$$\max_{\alpha_i,\alpha_i^*} -\frac{1}{2} \sum_i \sum_j (\alpha_i - \alpha_i^*)(\alpha_j - \alpha_j^*) K(x_i, x_j) \\ -\epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i y_i (\alpha_i - \alpha_i^*)$$

can be written as:

$$\max_{\beta_i} - \frac{1}{2} \sum_i \sum_j \beta_i \beta_j K(\mathbf{x}_i, \mathbf{x}_j) - \epsilon \sum_i |\beta_i| + \sum_i y_i \beta_i$$
 s.t.

- $\sum_i \beta_i = 0$
- $\overline{\beta_i} \in [-C, C]$ ,  $\forall i$
- Even for this form, standard QP (LCQP) solvers<sup>5</sup> can be used
- Question: How about (iteratively) solving for two  $\beta_i$ 's at a time?
  - This is the idea of the Sequential Minimal Optimization (SMO) algorithm



 $<sup>^5</sup> https://en.wikipedia.org/wiki/Quadratic\_programming \#Solvers\_and\_scripting\_includes + 1000 and 10$ 

<sup>.28</sup>programming.29\_languages

## Sequential Minimal Optimization (SMO) for SVR

Consider:

$$\max_{\beta_i} - \frac{1}{2} \sum_i \sum_j \beta_i \beta_j K(\mathbf{x}_i, \mathbf{x}_j) - \epsilon \sum_i |\beta_i| + \sum_i y_i \beta_i$$
 s.t.

- $\sum_i \beta_i = 0$
- $\overline{\beta_i} \in [-C, C]$ ,  $\forall i$
- The SMO subroutine can be defined as:
  - **1** Initialise  $\beta_1, \ldots, \beta_n$  to some value  $\in [-C, C]$
  - 2 Pick  $\beta_i$ ,  $\beta_i$  to estimate closed form expression for next iterate (i.e.  $\beta_i^{new}$ ,  $\beta_i^{new}$ )
  - Check if the KKT conditions are satisfied
    - If not, choose  $\beta_i$  and  $\beta_j$  that worst violate the KKT conditions and reiterate

Iterative Soft Thresholding Algorithm for Solving Lasso

#### Lasso: Recap Midsem Problem 2

 $\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \|\phi \mathbf{w} - \mathbf{y}\|^2 \ s.t. \ \|\mathbf{w}\|_1 \le \eta, \tag{1}$ 

where

$$\|\mathbf{w}\|_1 = \left(\sum_{i=1}^n |w_i|\right) \tag{2}$$

• Since  $\|\mathbf{w}\|_1$  is not differentiable, one can express (2) as a set of constraints

$$\sum_{i=1}^{n} \xi_i \le \eta, \ w_i \le \xi_i, \ -w_i \le \xi_i$$

 The resulting problem is a linearly constrained Quadratic optimization problem (LCQP):

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \|\phi \mathbf{w} - \mathbf{y}\|^2 \quad \text{s.t.} \quad \sum_{i=1}^n \xi_i \le \eta, \quad w_i \le \xi_i, \quad -w_i \le \xi_i$$
 (3)

#### Lasso: Continued

KKT conditions:

$$2(\phi^{T}\phi)\mathbf{w} - 2\phi^{T}y + \sum_{i=1}^{n}(\theta_{i} - \lambda_{i}) = 0$$
$$\beta(\sum_{i=1}^{n}\xi_{i} - \eta) = 0$$
$$\forall i, \ \theta_{i}(\mathbf{w}_{i} - \xi_{i}) = 0 \ \text{and} \ \lambda_{i}(-\mathbf{w}_{i} - \xi_{i}) = 0$$

Like Ridge Regression, an equivalent Lasso formulation can be shown to be:

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \|\phi \mathbf{w} - \mathbf{y}\|^2 + \lambda \|\mathbf{w}\|_1$$
 (4)

• The justification for the equivalence between (2) and (4) as well as the solution to (4) requires subgradient<sup>6</sup>.

# Iterative Soft Thresholding Algorithm (Proximal Subgradient Descent) for Lasso

- Let  $\varepsilon(\mathbf{w}) = \|\phi\mathbf{w} \mathbf{y}\|_2^2$
- Iterative Soft Thresholding Algorithm:

**Initialization:** Find starting point  $\mathbf{w}^{(0)}$ 

- Let  $\widehat{\mathbf{w}}^{(k+1)}$  be a next iterate for  $\varepsilon(\mathbf{w}^k)$  computed using using any (gradient) descent algorithm
- Compute  $\mathbf{w}^{(k+1)} = \underset{\mathbf{w}}{\operatorname{argmin}} ||\mathbf{w} \widehat{\mathbf{w}}^{(k+1)}||_2^2 + \lambda \mathbf{t}||\mathbf{w}||_1$  by:
  - ① If  $\widehat{w}_i^{(k+1)} > \lambda t$ , then  $w_i^{(k+1)} = -\lambda t + \widehat{w}_i^{(k+1)}$
  - 2 If  $\widehat{w}_i^{(k+1)} < \lambda t$ , then  $w_i^{(k+1)} = \lambda t + \widehat{w}_i^{(k+1)}$
  - 0 otherwise.
- Set k=k+1, **until** stopping criterion is satisfied (such as no significant changes in  $\mathbf{w}^k$  w.r.t  $\mathbf{w}^{(k-1)}$ )

Next few optional slides: Extra Material on Subgradients and Justification Behind Iterative Soft Thresholding

## (Optional) Subgradients

• An equivalent condition for convexity of  $f(\mathbf{x})$ :

$$\forall \ \mathbf{x}, \mathbf{y} \in \mathsf{dmn}(\mathbf{f}), \ \mathbf{f}(\mathbf{y}) \geq \mathbf{f}(\mathbf{x}) + \nabla^{\top} \mathbf{f}(\mathbf{x}) (\mathbf{y} - \mathbf{x})$$

•  $\mathbf{g_f}(\mathbf{x})$  is a subgradient for a function f at  $\mathbf{x}$  if

$$\forall \ \mathbf{y} \in \mathbf{dmn}(\mathbf{f}), \ \mathbf{f}(\mathbf{y}) \geq \mathbf{f}(\mathbf{x}) + \mathbf{g}_{\mathbf{f}}(\mathbf{x})^{\top}(\mathbf{y} - \mathbf{x})$$

- Any convex (even non-differentiable) function will have a subgradient at any point in the domain!
- If a convex function f is differentiable at  $\mathbf{x}$  then  $\nabla f(\mathbf{x}) = \mathbf{g_f}(\mathbf{x})$
- $\mathbf{x}$  is a point of minimum of (convex) f if and only if  $\mathbf{0}$  is a subgradient of f at  $\mathbf{x}$



## (Optional) Subgradients and Lasso

- Claim (out of syllabus): If  $\mathbf{w}^*(\eta)$  is solution to (2) and  $\mathbf{w}^*(\lambda)$  is solution to (4) then
  - Solution to (2) with  $\eta = ||\mathbf{w}^*(\lambda)||$  is also  $\mathbf{w}^*(\lambda)$  and
  - Solution to (4) with  $\lambda$  as solution to  $\phi^T(\phi \mathbf{w} y) = \lambda g_{\mathbf{x}}$  is also  $\mathbf{w}^*(\eta)$
- The unconstrained form for Lasso in (4) has no closed form solution
- But it can be solved using a generalization of gradient descent called proximal subgradient descent<sup>7</sup>

Thttps://www.cse.iitb.ac.in/~cs709/notes/enotes/lecture27b.pdf > (3) (2) (2)

ahttps://www.cse.iitb.ac.in/~cs709/notes/enotes/lecture27b.pd

- Let  $\varepsilon(\mathbf{w}) = \|\phi\mathbf{w} \mathbf{y}\|_2^2$
- Proximal Subgradient Descent Algorithm:
   Initialization: Find starting point w<sup>(0)</sup>
  - Let  $\widehat{\mathbf{w}}^{(\mathbf{k}+\mathbf{1})}$  be a next gradient descent iterate for  $\varepsilon(\mathbf{w}^k)$
  - Compute  $\mathbf{w}^{(k+1)} = \underset{\mathbf{w}}{\operatorname{argmin}} ||\mathbf{w} \widehat{\mathbf{w}}^{(k+1)}||_2^2 + \lambda \mathbf{t}||\mathbf{w}||_1$  by setting subgradient of this objective to  $\mathbf{0}$ . This results in:
    - 1 If  $\widehat{w}_i^{(k+1)} > \lambda t$ , then  $w_i^{(k+1)} = -\lambda t + \widehat{w}_i^{(k+1)}$
    - 2 If  $\widehat{w}_{i}^{(k+1)} < \lambda t$ , then  $w_{i}^{(k+1)} = \lambda t + \widehat{w}_{i}^{(k+1)}$
    - 0 otherwise.
  - Set k = k + 1, **until** stopping criterion is satisfied (such as no significant changes in  $\mathbf{w}^k$  w.r.t  $\mathbf{w}^{(k-1)}$ )

