Introduction to Machine Learning - CS5725
Instructor: Prof. Ganesh Ramakrishnan

Lecture 14 -Non-Parametric Regression, Algorithms for Optimizing
SVR and Lasso



Kernels in SVR

@ Recall:
Maxa,.ar — 3 22 20 — af) oy — o) )K (xi, %)) — €3 i(i +af) + 3, yiloi — af)
such that ) (o —af) =0, aj,af € [0, C] and the decision function:
f(x) =>;(ai —af)K(xi,x) + b
are all in terms of the kernel K(x;,x;) only

@ One can now employ any mercer kernel in SVR or Ridge Regression to implicitly
perform linear regression in higher dimensional spaces

@ Check out applet at https://www.csie.ntu.edu.tw/~cjlin/libsvm/ to see
the effect of non-linear kernels in SVR


https://www.csie.ntu.edu.tw/~cjlin/libsvm/

Basis function expansion & Kernel: Part 1

P
Consider regression function f(x) = Z w;¢;(x) with weight vector w estimated as
j=1
Wpe, = argmin L(p, w,y) + AQ(w)
w

It can be shown that for p € [0, 00), under certain conditions on K, the following can
be equivalent representations

o
p

f(x) =) wgj(x)
j=1
e And

F(x) =Y aiK(x,x)
i=1

e For what kind of regularizers Q(w), loss functions £(¢,w,y) and p € [0, c0) will
old??
'Section 5.8.1 of Tibshi.



Basis function expansion & Kernel: Part 2

@ We could also begin with (Eg: NadarayaWatson kernel regression)

2ity Yika(|lx = xi)|
227 Kan(x = xi[)

A non-parametric kernel k, is a non-negative real-valued integrable function
+o00

satisfying the following two requirements: / kn(u)du =1 and kp(—u) = kn(u)

F(x) =) aiK(x,x;)=
i=1

—0oQ
for all values of u

2Section 2.8.2 of Tibshi



Basis function expansion & Kernel: Part 2

@ We could also begin with (Eg: NadarayaWatson kernel regression)

S et s o ika(llx = %))
&) Z KOOxi)= S e x —il)

A non-parametric kernel k, is a non-negative real-valued integrable function
+o00

satisfying the following two requirements: / kn(u)du =1 and kp(—u) = kn(u)

—00

for all values of u

o E.g.: kn(xi —x) = I([|xi — x|| < [|x(ky — x|) where x) is the training observation
ranked k%" in distance from x and /(S) is the indicator of the set S

@ This is precisely the Nearest Neighbor Regression model

@ Kernel regression and density models are other examples of such local regression
methods?

@ The broader class - Non-Parametric Regression: y = g(x) + € where functional
form of g(x) is not fixed

2Section 2.8.2 of Tibshi
S




Non-parametric Kernel weighted regression (Local Linear Regression): Tut

5, Prob 3

Given D = {(Xx1,%1)s- - (Xi ¥i)s - - - » (Xny ¥n) }, predict £(x') = (w' " ¢(x') + b) for each
test (or query point) x” as:

n

. / 2
(w,b') = arit?;ln; K(x', ;) (Yi — (w'o(x) + b))

@ |If there is a closed form expression for (w’, b’) and therefore for f(x’) in terms of
the known quantities, derive it.

@ How does this model compare with linear regression and k—nearest neighbor
regression? What are the relative advantages and disadvantages of this model?

@ In the one dimensional case (that is when ¢(x) € R), graphically try and interpret
what this regression model would look like, say when K(.,.) is the linear kernel3.

3Hint: What would the regression function look like at each training data point?



Answer to Question 1

The weighing factor rX’ of each training data point (x;, y;) is now also a function of the

query or test data point (x',?), so that we write it as rX’ = K(x',x;) for i =1,...,m.
Let r,)j,/H =1 and let R be an (m+ 1) x (m+ 1) diagonal matrix of r, rgl,...,r,’j;ﬂ.

0 .0

0 0

R = 2
1

0 0 0 X

Further, let

and



Answer to Question 1 (contd.)

w1
P
Wp
b
and
n
y=1..
Ym

The sum-square error function then becomes

5l = @T0(x) + b)) = 3|IVRy — VRow|B

where v/R is a diagonal matrix such that each diagonal element of /R is the square
root of the corresponding element of R.



Answer to Question 1 (contd.)

The sum-square error function:

1< 1 _
5D il — (WT(x) + b)) = 5[IVRy — VRO
i=1
This convex function has a global minimum at W' such that
W' = (¢"R®) 1T Ry

This is referred to as local linear regression (Section 6.1.1 of Tibshi).



Answer to Question 2

@ Local linear regression gives more importance (than linear regression) to points in
D that are closer/similar to x” and less importance to points that are less similar.

@ Important if the regression curve is supposed to take different shapes in different
parts of the space.

© Local linear regression comes close to k-nearest neighbor. But unlike k-nearest
neighbor, local linear regression gives you a smooth solution



Answer to Question 3

15 Y(X\)* . e Y (Xo) |

Local linear
regression result




Solving the SVR Dual Optimization Problem

@ The SVR dual objective is:
maxa, or — 3 2_; > (@i — af) () — ai)K(x;, %))
—ey (ai+af)+ >, vilaj—af) such that ) (aj — af) =0, aj, af € [0, C]

@ This is a linearly constrained quadratic program (LCQP), just like the constrained
version of Lasso

@ There exists no closed form solution to this formulation

o Standard QP (LCQP) solvers* can be used

@ Question: Are there more specific and efficient algorithms for solving SVR in this
form?

*https://en.wikipedia.org/wiki/Quadratic_programming#Solvers_and_scripting_
.28programming.29_languages


https://en.wikipedia.org/wiki/Quadratic_programming#Solvers_and_scripting_.28programming.29_languages
https://en.wikipedia.org/wiki/Quadratic_programming#Solvers_and_scripting_.28programming.29_languages

Sequential Minimial Optimization Algorithm for Solving SVR



Solving the SVR Dual Optimization Problem

@ It can be shown that the objective:
maxa;ar — 3 2 2;(i — af)(aj — af)K(x;, )
—eXilai+af) + 2 yilei — af)
@ can be written as:
maxs, — 3200 20 BiBiK (xisxp) — € 32; |81l + X2, vibi
s.t.
e > /=0
o Bie[-C,C) Vi
e Even for this form, standard QP (LCQP) solvers® can be used
@ Question: How about (iteratively) solving for two 3;'s at a time?
e This is the idea of the Sequential Minimal Optimization (SMO) algorithm

*https://en.wikipedia.org/wiki/Quadratic_programming#Solvers_and_scripting_
.28programming.29_languages


https://en.wikipedia.org/wiki/Quadratic_programming#Solvers_and_scripting_.28programming.29_languages
https://en.wikipedia.org/wiki/Quadratic_programming#Solvers_and_scripting_.28programming.29_languages

Sequential Minimal Optimization (SMO) for SVR

o Consider:
maxg, — 3 32 32 BiliK (xi, x1) — € X2 1Bil + X2, viBi
s.t.
° 36 =0

o Bie[-C,C| Vi
@ The SMO subroutine can be defined as:

@ Initialise b1, ..., 8, to some value € [-C, C]
@ Pick 3i, B to estimate closed form expression for next iterate (i.e. 37, ﬁj’ﬁew)
© Check if the KKT conditions are satisfied

@ If not, choose f3; and 3; that worst violate the KKT conditions and reiterate



Iterative Soft Thresholding Algorithm for Solving Lasso



Lasso: Recap Midsem Problem 2

o
w* = argmin [[gw — y||* s.t. [w]; <7, (1)
w

where
lwily = (3 Iwil) (2)
i=1

e Since ||w/||; is not differentiable, one can express (2) as a set of constraints

n
Zfi <n w <&, —w <&

i=1

@ The resulting problem is a linearly constrained Quadratic optimization problem
(LCQP):

n
w* = argmin|lgw —y||* s.t. > &<, wi <&, —w < § (3)
w i=1



Lasso: Continued

o KKT conditions: .
2047w —20Ty +> (6= \i) =0
i=1

n
8O & —m)=0
i=1
A i, 0,-(w,- — f,) =0 and )\,'(—W,' — 5,) =0
@ Like Ridge Regression, an equivalent Lasso formulation can be shown to be:

w = argmianﬁw—sz‘i‘)\HWHl (4)
w

@ The justification for the equivalence between (2) and (4) as well as the solution to
(4) requires subgradient®.

®https://www.cse.iitb.ac.in/~cs709/notes/enotes/lecture27b. pdf


https://www.cse.iitb.ac.in/~cs709/notes/enotes/lecture27b.pdf

lterative Soft Thresholding Algorithm (Proximal Subgradient Descent) for

Lasso

o Let c(w) = [low —y3
o lterative Soft Thresholding Algorithm:
Initialization: Find starting point w(®)
o Let wkt1) be a next iterate for e(w*) computed using using any (gradient) descent

algorithm
o Compute w(*1) = argmin||w — W12 4+ \t||w|[; by:
w

Q@ 1f W™ > At, then w ™) = —xt + wY
Q 1f W™ < At, then w!*™) = At + w,(k“)
© 0 otherwise.
o Set k = k + 1, until stopping criterion is satisfied (such as no significant changes in
wk w.r.t wik—1)



(Optional) Subgradients

An equivalent condition for convexity of f(x):
¥ x,y € dmn(f), f(y) > f(x) + VT F(x)(y — x)
e g¢(x) is a subgradient for a function f at x if

¥y € dmn(f), f(y) > f(x) +gr(x)" (y —x)

Any convex (even non-differentiable) function will have a subgradient at any point
in the domain!

If a convex function f is differentiable at x then Vf(x) = g¢(x)

@ x is a point of minimum of (convex) f if and only if 0 is a subgradient of f at x



(Optional) Subgradients and Lasso

e Claim (out of syllabus): If w*(n) is solution to (2) and w*(\) is solution to (4)
then
e Solution to (2) with n = ||w*(\)|| is also w*(A) and
o Solution to (4) with X as solution to ¢7 (dw — y) = Mgy is also w*(n)

@ The unconstrained form for Lasso in (4) has no closed form solution

@ But it can be solved using a generalization of gradient descent called proximal
subgradient descent’

"https://www.cse.iitb.ac.in/~cs709/notes/enotes/lecture27b. pdf


https://www.cse.iitb.ac.in/~cs709/notes/enotes/lecture27b.pdf

(Optional) Proximal Subgradient Descent for Lasso?

o Let c(w) = ow —y;
@ Proximal Subgradient Descent Algorithm:
Initialization: Find starting point w(®)
o Let wk*1) be a next gradient descent iterate for £(w*)
o Compute w(**1) = argmin|jw — w(k*1)||2 1 \t||w||; by setting subgradient of this

objective to 0. This re_:,vults in:
Q@ 1f ™ > At, then w* ™ = Xt + w,
Q Ifw A(k“) < At, then w ™) =\t + w
Qo0 otherW|se
o Set k = k + 1, until stopping criterion is satisfied (such as no significant changes in
wk w.r.t wik—1)

(k+1)
k+1)


https://www.cse.iitb.ac.in/~cs709/notes/enotes/lecture27b.pdf

