Lecture 15: Kernel perceptron, Neural Networks, SVMs etc Instructor: Prof. Ganesh Ramakrishnan

40.40.45.45. 5 000

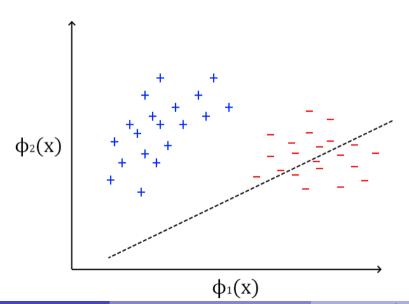
Perceptron Update Rule: Basic Idea

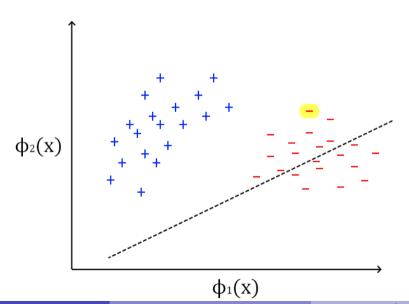
- Perceptron works for two classes $(y = \pm 1)$. A point is misclassified if $y\mathbf{w}^T(\phi(\mathbf{x})) < 0$
- Perceptron Algorithm:
 - ► INITIALIZE: w=ones()
 - ▶ REPEAT: for each $\langle \mathbf{x}, y \rangle$
 - * If $y\mathbf{w}^T\Phi(\mathbf{x}) < 0$
 - ***** then, $\mathbf{w} = \mathbf{w} + \eta \phi(\mathbf{x}).y$
 - * endif

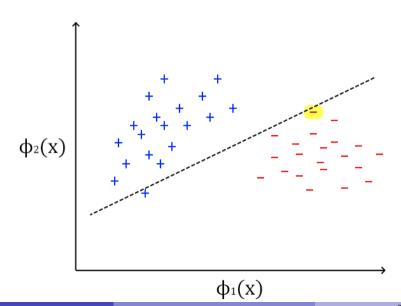
Intuition:

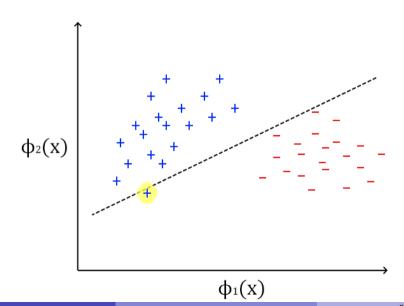
$$y(\mathbf{w}^{(k+1)})^T \phi(\mathbf{x}) = y(\mathbf{w}^k + \eta y \phi^T(\mathbf{x})) \phi(\mathbf{x})$$
$$= y(\mathbf{w}^k)^T \phi(\mathbf{x}) + \eta y^2 ||\phi(\mathbf{w})||^2$$
$$> y(\mathbf{w}^k)^T \phi(\mathbf{x})$$

Since $y(\mathbf{w}^k)^T \phi(\mathbf{x}) \leq 0$, we have $y(\mathbf{w}^{(k+1)})^T \phi(\mathbf{x}) > y(\mathbf{w}^k)^T \phi(\mathbf{x}) \Rightarrow$ more hope that this point is classified correctly now.

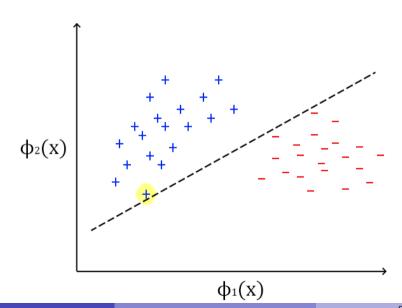






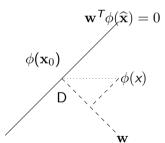


6 / 19



Perceptron Update Rule: Error Perspective

- Explicitly account for signed distance of (misclassified) points from the hyperplane $\mathbf{w}^T \phi(\widehat{\mathbf{x}}) = 0$. Consider point \mathbf{x}_0 such that $\mathbf{w}^T(\phi(\mathbf{x}_0)) = 0$
- (Signed) Distance from hyperplane is: $\mathbf{w}^T(\phi(\mathbf{x}) \phi(\mathbf{x}_0)) = \mathbf{w}^T(\phi(\mathbf{x}))$
- Unsigned distance from hyperplane is: $y\mathbf{w}^T(\phi(\mathbf{x}))$ (assumes correct classification)



• If x is misclassified, the misclassification cost for x is $-y\mathbf{w}^T(\phi(\mathbf{x}))$

Perceptron Update Rule: Error Minimization

• Perceptron update tries to minimize the error function E = negative of sum of unsigned distances over misclassified examples = sum of misclassification costs

$$E = -\sum_{(\mathbf{x}, y) \in \mathcal{M}} y \mathbf{w}^T \phi(\mathbf{x})$$

where $\mathcal{M} \subseteq \mathcal{D}$ is the set of misclassified examples.

• Gradient Descent (Batch Perceptron) Algorithm $\nabla_{\mathbf{w}} E = -\sum_{(\mathbf{x}, \mathbf{y}) \in M} \mathbf{y} \phi(\mathbf{x})$

$$\mathbf{w}^{(k+1)} = \mathbf{w}^k - \eta \nabla_{\mathbf{w}} E$$
$$= \mathbf{w}^k + \eta \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{M}} \mathbf{y} \phi(\mathbf{x})$$

Perceptron Update Rule: Error Minimization

Batch update considers all misclassified points simultaneously

$$\mathbf{w}^{(k+1)} = \mathbf{w}^k - \eta \nabla_{\mathbf{w}} E$$
$$= \mathbf{w}^k + \eta \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{M}} \mathbf{y} \phi(\mathbf{x})$$

• Perceptron update ⇒ Stochastic Gradient Descent:

$$\nabla_{\mathbf{w}} E = -\sum_{(\mathbf{x}, y) \in \mathcal{M}} y \phi(\mathbf{x}) = -\sum_{(\mathbf{x}, y) \in \mathcal{M}} \nabla_{\mathbf{w}} E(\mathbf{x}) \text{ s.t. } E(\mathbf{x}) = -y \mathbf{w}^T \phi(\mathbf{x})$$

$$\mathbf{w}^{(k+1)} = \mathbf{w}^k - \eta \nabla_w E(\mathbf{x})$$
 (for any $(\mathbf{x}, y) \in \mathcal{M}$)
= $\mathbf{w}^k + \eta v \phi(\mathbf{x})$

• Formally,:- If \exists an optimal separating hyperplane with parameters \mathbf{w}^* such that,

$$\forall (\mathbf{x}, \mathbf{y}), \ \mathbf{y}\phi^{\mathsf{T}}(\mathbf{x})\mathbf{w}^* \ge 0$$

then the perceptron algorithm converges.

Proof:- We want to show that

$$\lim_{k \to \infty} \|\mathbf{w}^{(k+1)} - \rho \mathbf{w}^*\|^2 = 0 \tag{1}$$

(If this happens for some constant ρ , we are fine.)

ullet Formally,:- If \exists an optimal separating hyperplane with parameters \mathbf{w}^* such that,

$$\forall (\mathbf{x}, \mathbf{y}), \ \mathbf{y}\phi^{\mathsf{T}}(\mathbf{x})\mathbf{w}^* \ge 0$$

then the perceptron algorithm converges.

Proof:- We want to show that

$$\lim_{k \to \infty} \|\mathbf{w}^{(k+1)} - \rho \mathbf{w}^*\|^2 = 0 \tag{1}$$

(If this happens for some constant ρ , we are fine.)

$$\|\mathbf{w}^{(k+1)} - \rho \mathbf{w}^*\|^2 = \|\mathbf{w}^k - \rho \mathbf{w}^*\|^2 + \|y\phi(\mathbf{x})\|^2 + 2y(\mathbf{w}^k - \rho \mathbf{w}^*)^T \phi(\mathbf{x})$$
 (2)

• For convergence of perceptron, we need L.H.S. to be less than R.H.S. at every step, although by some small but non-zero value (with $\theta \neq 0$)

$$\|\mathbf{w}^{(k+1)} - \rho\mathbf{w}^*\|^2 \le \|\mathbf{w}^k - \rho\mathbf{w}^*\|^2 - \theta^2$$
 (3)

• Need that $\|\mathbf{w}^{(k+1)} - \rho \mathbf{w}^*\|^2$ reduces by atleast θ^2 at every iteration.

$$\|\mathbf{w}^{(k+1)} - \rho \mathbf{w}^*\|^2 \le \|\mathbf{w}^k - \rho \mathbf{w}^*\|^2 - \theta^2$$
 (4)

• Based on (2) and (4), we need to find θ such that,

• Need that $\|\mathbf{w}^{(k+1)} - \rho \mathbf{w}^*\|^2$ reduces by atleast θ^2 at every iteration.

$$\|\mathbf{w}^{(k+1)} - \rho\mathbf{w}^*\|^2 \le \|\mathbf{w}^k - \rho\mathbf{w}^*\|^2 - \theta^2$$
 (4)

• Based on (2) and (4), we need to find θ such that,

$$\|\phi(\mathbf{x})\|^2 + 2y(\mathbf{w}^k - \rho\mathbf{w}^*)^T\phi(\mathbf{x}) \le -\theta^2$$

$$(\|y\phi(\mathbf{x})\|^2 = \|\phi(\mathbf{x})\|^2 \text{ since } y = \pm 1)$$

- ullet The number of iterations would be: $O\left(rac{\|\mathbf{w}^{(0)}
 ho \mathbf{w}^*\|^2}{ heta^2}
 ight)$
- Tutorial 6, Problem 4 is concerning the number of iterations. But first we will discuss how convergence holds in the first place!

- Observations:-
 - ① $y(\mathbf{w}^k)^T \phi(\mathbf{x}) < 0$ ($\cdot \cdot \cdot \mathbf{x}$ was misclassified) ② $\Gamma^2 = \max_{\mathbf{x} \in \mathcal{D}} \|\phi(\mathbf{x})\|^2$
- Here, negative margin $\delta = -2\gamma \mathbf{w}^* {}^T \phi(\widehat{\mathbf{x}})$ is the negative of unsigned distance of closest point $\hat{\mathbf{x}}$ from separating hyperplane : $\hat{\mathbf{x}} = \operatorname{argmax} - 2y\mathbf{w}^{*T}\phi(\mathbf{x}) = \operatorname{argmin} y\mathbf{w}^{*T}\phi(x)$
- Since the data is linearly separable.

- Observations:-
 - ① $y(\mathbf{w}^k)^T \phi(\mathbf{x}) < 0$ ($\cdot \cdot \cdot \mathbf{x}$ was misclassified) ② $\Gamma^2 = \max_{\mathbf{x} \in \mathcal{D}} \|\phi(\mathbf{x})\|^2$
- Here, negative margin $\delta = -2\gamma \mathbf{w}^* {}^T \phi(\widehat{\mathbf{x}})$ is the negative of unsigned distance of closest point $\hat{\mathbf{x}}$ from separating hyperplane : $\hat{\mathbf{x}} = \underset{\mathbf{x} \in \mathcal{D}}{\operatorname{argmin}} y \mathbf{w}^{*T} \phi(\mathbf{x}) = \underset{\mathbf{x} \in \mathcal{D}}{\operatorname{argmin}} y \mathbf{w}^{*T} \phi(\mathbf{x})$
- Since the data is linearly separable, $\widehat{\mathbf{v}}\mathbf{w}^{*T}\phi(\widehat{\mathbf{x}}) > 0$. so. $\delta < 0$. Consequently:

$$0 \le \|\mathbf{w}^{(k+1)} - \rho\mathbf{w}^*\|^2 < \|\mathbf{w}^k - \rho\mathbf{w}^*\|^2 + \Gamma^2 + \rho\delta$$

• Since, $\mathbf{w}^{*T}\phi(\widehat{\mathbf{x}}) \geq 0$, so, $\delta \leq 0$. Consequently:

$$0 \le \|\mathbf{w}^{(k+1)} - \rho\mathbf{w}^*\|^2 < \|\mathbf{w}^k - \rho\mathbf{w}^*\|^2 + \Gamma^2 + \rho\delta$$

Taking.

• Since, $\mathbf{w}^{*T}\phi(\widehat{\mathbf{x}}) \geq 0$, so, $\delta \leq 0$. Consequently:

$$0 \le \|\mathbf{w}^{(k+1)} - \rho\mathbf{w}^*\|^2 < \|\mathbf{w}^k - \rho\mathbf{w}^*\|^2 + \Gamma^2 + \rho\delta$$

Taking,
$$ho = \frac{2\Gamma^2}{-\delta}$$
,

$$0 \le \|\mathbf{w}^{(k+1)} - \rho\mathbf{w}^*\|^2 \le \|\mathbf{w}^k - \rho\mathbf{w}^*\|^2 - \Gamma^2$$

- Hence, we got, $\Gamma^2 = \theta^2$, that we were looking for in eq.(3). $\therefore \|\mathbf{w}^{(k+1)} \rho \mathbf{w}^*\|^2$ decreases by atleast Γ^2 at every iteration.
- ullet Summarily: \mathbf{w}^k converges to $ho \mathbf{w}^*$ by making a minimum $heta^2$ decrement at each step.
- Thus, for $k \to \infty$, $\|\mathbf{w}^k \rho \mathbf{w}^*\| \to 0$. This proves convergence.

• A statement on number of iterations for convergence: If $||\mathbf{w}^*|| = 1$ and if there exists $\delta > 0$ such that for all $i = 1, \ldots, n$, $y_i(\mathbf{w}^*)^T \phi(\mathbf{x}_i) \ge \delta$ and $||\phi(\mathbf{x}_i)||^2 \le \Gamma^2$ then the perceptron algorithm will make atmost $\frac{\Gamma^2}{\delta^2}$ errors (that is take atmost $\frac{\Gamma^2}{\delta^2}$ iterations to converge)

Non-linear perceptron?

• Kernelized perceptron:

Non-linear perceptron?

• Kernelized perceptron:
$$f(\mathbf{x}) = sign\left(\sum_{i} \alpha_{i} y_{i} K(\mathbf{x}, \mathbf{x}_{i}) + b\right)$$

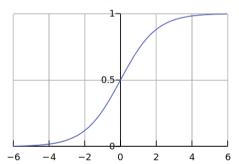
- ► INITIALIZE: α=zeroes()
- ▶ REPEAT: for $\langle \mathbf{x}_i, y_i \rangle$

★ If
$$sign\left(\sum_{j} \alpha_{j} y_{j} K(\mathbf{x}_{j}, \mathbf{x}_{j}) + b\right) \neq y_{i}$$

- ***** then, $\alpha_i = \alpha_i + 1$
- endif
- Neural Networks: Cascade of layers of perceptrons giving you non-linearity. But before that, we will discuss the specific sigmoidal percentron used most often in Neural Networks

Sigmoidal (perceptron) Classifier

- (Binary) Logistic Regression, abbreviated as LR is a single node perceptron-like classifier, but with....
 - ▶ $sign((\mathbf{w}^*)^T\phi(x))$ replaced by $g((\mathbf{w}^*)^T\phi(\mathbf{x}))$ where g(s) is sigmoid function: $g(s) = \frac{1}{1+e^{-s}}$
- $g\left((\mathbf{w}^*)^T\phi(\mathbf{x})\right) = \frac{1}{1+e^{-(\mathbf{w}^*)^T\phi(\mathbf{x})}} \in [0,1] \text{ can be interpreted as } Pr(y=1|\mathbf{x})$
 - ► Then Pr(v = 0|x) = ?



Logistic Regression: The Sigmoidal (perceptron) Classifier

- $\textbf{ § Estimator } \widehat{\mathbf{w}} \text{ is a function of the dataset } \\ \mathcal{D} = \left\{ (\phi(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\phi(\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \dots, (\phi(\mathbf{x}^{(m)}, \mathbf{y}^{(m)})) \right\}$
 - ightharpoonup Estimator $\widehat{\mathbf{w}}$ is meant to approximate the parameter \mathbf{w} .
- **②** Maximum Likelihood Estimator: Estimator $\widehat{\mathbf{w}}$ that maximizes the likelihood $L(\mathcal{D}; \mathbf{w})$ of the data \mathcal{D} .
 - Assumes that all the instances $(\phi(\mathbf{x}^{(1)}, y^{(1)}), (\phi(\mathbf{x}^{(2)}, y^{(2)}), \dots, (\phi(\mathbf{x}^{(m)}, y^{(m)}))$ in \mathcal{D} are all independent and identically distributed (iid)
 - lacktriangle Thus, Likelihood is the probability of $\mathcal D$ under iid assumption: $\hat{\mathbf w} = \underset{\mathbf w}{\operatorname{argmax}} \ L(\mathcal D, \mathbf w) = 1$

Logistic Regression: The Sigmoidal (perceptron) Classifier

- Estimator $\widehat{\mathbf{w}}$ is a function of the dataset $\mathcal{D} = \left\{ (\phi(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\phi(\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \dots, (\phi(\mathbf{x}^{(m)}, \mathbf{y}^{(m)})) \right\}$
 - **E**stimator $\hat{\mathbf{w}}$ is meant to approximate the parameter \mathbf{w} .
- **9** Maximum Likelihood Estimator: Estimator $\widehat{\mathbf{w}}$ that maximizes the likelihood $L(\mathcal{D}; \mathbf{w})$ of the data \mathcal{D} .
 - Assumes that all the instances $(\phi(\mathbf{x}^{(1)}, y^{(1)}), (\phi(\mathbf{x}^{(2)}, y^{(2)}), \dots, (\phi(\mathbf{x}^{(m)}, y^{(m)}))$ in \mathcal{D} are all independent and identically distributed (iid)
 - ▶ Thus, Likelihood is the probability of \mathcal{D} under iid assumption: $\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmax}} \ L(\mathcal{D}, \mathbf{w}) =$

$$\mathrm{argmax}_{\mathbf{w}} \ \prod_{i=1}^m p(y^{(i)}|\phi(\mathbf{x}^{(i)})) = \mathrm{argmax}_{\mathbf{w}} \ \prod_{i=1}^m \left(\frac{1}{1+e^{-(w)^T\phi(\mathbf{x}^{(i)})}}\right)^{y^{(i)}} \left(\frac{e^{-(w)^T\phi(\mathbf{x}^{(i)})}}{1+e^{-(w)^T\phi(\mathbf{x}^{(i)})}}\right)^{1-y^{(i)}}$$

Training LR

f 0 Thus, Maximum Likelihood Estimator for f w is

$$\begin{split} \hat{\mathbf{w}} &= \operatorname{argmax}_{\mathbf{w}} \ L(\mathcal{D}, \mathbf{w}) = \operatorname{argmax}_{\mathbf{w}} \prod_{i=1} p(\mathbf{y}^{(i)} | \phi(\mathbf{x}^{(i)})) \\ &= \operatorname{argmax}_{\mathbf{w}} \prod_{i=1}^{m} \left(\frac{1}{1 + e^{-\mathbf{w}^T \phi(\mathbf{x}^{(i)})}} \right)^{\mathbf{y}^{(i)}} \left(\frac{e^{-\mathbf{w}^T \phi(\mathbf{x}^{(i)})}}{1 + e^{-\mathbf{w}^T \phi(\mathbf{x}^{(i)})}} \right)^{1 - \mathbf{y}^{(i)}} \\ &= \operatorname{argmax}_{\mathbf{w}} \ \prod_{i=1}^{m} \left(f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) \right)^{\mathbf{y}^{(i)}} \left(1 - f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) \right)^{1 - \mathbf{y}^{(i)}} \end{split}$$

- ② Maximizing the likelihood $Pr(\mathcal{D}; \mathbf{w})$ w.r.t \mathbf{w} , is the same as minimizing the negative log-likelihood $E(\mathbf{w}) = -\frac{1}{m} \log Pr(\mathcal{D}; \mathbf{w})$ w.r.t \mathbf{w} .
 - ▶ Derive the expression for $E(\mathbf{w})$.
 - $ightharpoonup E(\mathbf{w})$ is called the cross-entropy loss function

