Lecture 15: Kernel perceptron, Neural Networks, SVMs etc
Instructor: Prof. Ganesh Ramakrishnan



Perceptron Update Rule: Basic ldea

o Perceptron works for two classes (y = +1). A point is misclassified if yw ' (¢(x)) <0
@ Perceptron Algorithm:

» INITIALIZE: w=ones()

» REPEAT: for each < x,y >
* If yw ®(x) < 0
* then, w = w + n¢(x).y
* endif

o Intuition:

yw ) Tox) =y (wh+ T (x)) 6(x)
= YW T6(x) +ny o(w)
> YW To(x)

Since y(w¥)Té(x) < 0, we have y(w D) Te(x) > y(w¥)T¢(x) = more hope that this
point is classified correctly now.
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Perceptron Update Rule: Error Perspective

e Explicitly account for signed distance of (misclassified) points from the hyperplane
w'$(X) = 0. Consider point xq such that w’(¢(xq)) = 0

o (Signed) Distance from hyperplane is: w'(¢(x) — ¢(x0)) = W' (¢(x))

o Unsigned distance from hyperplane is: yw(¢(x)) (assumes correct classification)

wlp(X) =0

e If x is misclassified, the misclassification cost for x is —yw ' (¢(x))
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Perceptron Update Rule: Error Minimization

@ Perceptron update tries to minimize the error function E = negative of sum of unsigned
distances over misclassified examples = sum of misclassification costs

E=— > ywio(x)

(x,y)eEM

where M C D is the set of misclassified examples.

e Gradient Descent (Batch Perceptron) Algorithm V E = — Z yo(x)
(x,y)eM

wkt D) = wk — NnVwE

=wktn D ye(x)

(x,y)EM

D September 22, 2016 9/ 10



Perceptron Update Rule: Error Minimization

@ Batch update considers all misclassified points simultaneously
W(k+1) _ Wk _ nvwE

=whtn Y ye(x)

(x,y)EM

@ Perceptron update = Stochastic Gradient Descent:

VwE=—= Y yp(x)=— > VuEx) st Ex)=—yw ¢(x)

(x,y)eEM (x,y)eM
wlkt) — wk _ v E(x) (for any (x,y) € M)
= w" + nyd(x)
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Perceptron Update Rule: Further analysis

e Formally,:- If 3 an optimal separating hyperplane with parameters w* such that,
YV (x,y), yo (x)w* >0

then the perceptron algorithm converges.
Proof:- We want to show that

(k+1)

lim (Wl — pw*|[* = 0 (1)
—00

(If this happens for some constant p, we are fine.)
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Perceptron Update Rule: Further analysis

e Formally,:- If 3 an optimal separating hyperplane with parameters w* such that,
YV (x,y), ¢  (x)w* >0

then the perceptron algorithm converges.
Proof:- We want to show that

k+1)

lim [lw(D — pw*(|* = 0 (1)
— 00

(If this happens for some constant p, we are fine.)

lw ) — pw* || = [[wh — pw |2 + [|yd(x)[|* + 2(w* — pw*) T (x) (2)

@ For convergence of perceptron, we need L.H.S. to be less than R.H.S. at every step,
although by some small but non-zero value (with 6 # 0)

lw D — pw|? < [lwh — pw* || — 67 (3)
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Perceptron Update Rule: Further analysis

o Need that |[w*t1) — pw*||? reduces by atleast 62 at every iteration.

w4 — pw* |2 < [[wk — pw |2 — 6

@ Based on (2) and (4), we need to find € such that,

D September 22, 2016

12 /19



Perceptron Update Rule: Further analysis

o Need that |[w*t1) — pw*||? reduces by atleast 62 at every iteration.

D — pw | < [lwk — pw"|? — 67 (4)

@ Based on (2) and (4), we need to find € such that,

lw

[p(x)||? + 2y(wk — pw*) Tp(x) < —6?

(lyp)II* = ¢(x)[|* since y = £1)
@ The number of iterations would be: O(M)

@ Tutorial 6, Problem 4 is concerning the number of iterations. But first we will discuss how
convergence holds in the first place!
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Perceptron Update Rule: Further analysis

o Observations:-
Q@ y(wh)Tgp(x) < 0 (.- x was misclassified)
@ I'* = max o(x)|*

_ _ x T
Q §=max—2yw" ¢(x)

@ Here, negative margin § = —2yw™ T¢(§) is the negative of unsigned distance of closest

point X from separating hyperplane : X = argmax —2yw* ' ¢(x) = argmin yw* ' $(x)
x€eD xeD

@ Since the data is linearly separable,
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Perceptron Update Rule: Further analysis

o Observations:-
Q@ y(wh)Tgp(x) < 0 (.- x was misclassified)
@ I'* = max o(x)|*

_ _ x T
Q §=max—2yw" ¢(x)

o Here, negative margin § = —2yw* ' $(X) is the negative of unsigned distance of closest
point X from separating hyperplane : X = argmax —2yw* Top(x) = argmigyw* To(x)
pS] Xe

e Since the data is linearly separable, yw* T¢(X) > 0, so, 6 < 0. Consequently:

0 < [[wi — pw||? < Wk — pw"||> + T? + s
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Perceptron Update Rule: Further analysis

Taking,

e Since, w*T¢(X) > 0, so, § < 0. Consequently:

pw*[|? < [lwk — pw*[|* + T2 + po



Perceptron Update Rule: Further analysis

e Since, w*T¢(X) > 0, so, § < 0. Consequently:
0 < Wk = pw*|2 < [[wk — pw? |24+ T2 + po

212
Taking, p = —5
0 < [|wD — pw*||? < [|wk — pw*||* — I

@ Hence, we got, ' = #2, that we were looking for in eq.(3).
o |lw ) — pw*||? decreases by atleast I'? at every iteration.

o Summarily: wk

o Thus, for k — oo, ||[wk — pw*|| — 0. This proves convergence.
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Perceptron Update Rule: Further analysis

@ A statement on number of iterations for convergence:
If ||[w*|| = 1 and if there exists § > 0 such that for all i=1,...,n, y(w*)T¢(x;) > 6 and

||¢(x;)||? < T2 then the perceptron algorithm will make atmost g—j errors (that is take
atmost g—z iterations to converge)
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Non-linear perceptron?

@ Kernelized perceptron:



Non-linear perceptron?

o Kernelized perceptron: f(x) = sign Za,-y,-K(x,x,-) +b
i

> INITIALIZE: a=zeroes()

» REPEAT: for < x;, y; >
* 1f sign (X2 pyiK(xj, %) + b) # v,
* then, aj=a;+1
* endif

@ Neural Networks: Cascade of layers of perceptrons giving you non-linearity. But before
that, we will discuss the specific sigmoidal percentron used most often in Neural Networks
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Sigmoidal (perceptron) Classifier

O (Binary) Logistic Regression, abbreviated as LR is a single node perceptron-like
classifier, but with....

> sign ((w*)T¢(x)) replaced by g ((w*)7¢(x)) where g(s) is sigmoid function: g(s) = 7=

2] g((w*)Tq’)(x)) = m € [0,1] can be intepreted as Pr(y = 1]x)
» Then Pr(y =0|x) =7

14 —

0:5
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Logistic Regression: The Sigmoidal (perceptron) Classifier

@ Estimator w is a function of the dataset
D = {(6(xV,yV), (6(xD, y?), ... (o(x(™, ym)) }
» Estimator w is meant to approximate the parameter w.
@ Maximum Likelihood Estimator: Estimator w that maximizes the likelihood L(D;w) of
the data D.

» Assumes that all the instances (¢(x™), yM), (o(xP), Y1), ... (¢(x(™, y{™)) in D are all
independent and identically distributed (iid)
» Thus, Likelihood is the probability of D under iid assumption: w = argmax L(D,w) =
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» Assumes that all the instances (¢(x™), yM), (o(xP), Y1), ... (¢(x(™, y{™)) in D are all
independent and identically distributed (iid)
» Thus, Likelihood is the probability of D under iid assumption: w = argmax L(D,w) =
o)

m (i) () m 1 0 —m) Tp() oy
1 ) — e
argmaXy, Hi:l p(y |(;5(X )) = argmaxy H;=1 (1+e,(w)r¢(x<i)')> Tte (TG
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Training LR

@ Thus, Maximum Likelihood Estimator for w is

W = argmax L(D’ W) — argmaxH p(y(i)|¢(x(i)))

i=1 .
oW o(x") ) 1=
)

S
= argmaxH <m> (W
(e (-et)”
e T () (1)
-

@ Maximizing the likelihood Pr(D;w) w.r.t w, is the same as minimizing the negative
log-likelihood E(w) = —2L log Pr(D; w) w.r.t w.
» Derive the expression for E(w).
» E(w) is called the cross-entropy loss function
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