Lecture 17: Logistic Regression contd.
Instructor: Prof. Ganesh Ramakrishnan



Sigmoidal (perceptron) Classifier

O (Binary) Logistic Regression, abbreviated as LR is a single node perceptron-like
classifier, but with....

> sign ((w*)Tp(x)) replaced by g ((w*)"¢(x)) where g(s) is sigmoid function: g(s) =

Q9 fw(x) = g((W*)Td)(X)) = 7555 € [0,1] can be interpreted as Pr(y = 1|x)

14e—(w
» Then Priy =0|x) = 1 — fw(x)

1+e—s

14 —
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Logistic Regression: The Sigmoidal (perceptron) Classifier

@ Estimator w is a function of the dataset
D = {6, yV), (6(xD, y?), ... (o(x(™, ym)) }
» Estimator w is meant to approximate the parameter w.

@ Maximum Likelihood Estimator: Estimator w that maximizes the likelihood L(D;w) of
the data D.
» Assumes that all the instances (¢(x™), yM), (p(xP), 1), ... (o(x(™, y(™)) in D are all
independent and identically distributed (iid)
» Thus, Likelihood is the probability of D under iid assumption: w = max L(D,w) =

w
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@ Estimator w is a function of the dataset
D = {6, yV), (6(xD, y?), ... (o(x(™, ym)) }
» Estimator w is meant to approximate the parameter w.

@ Maximum Likelihood Estimator: Estimator w that maximizes the likelihood L(D;w) of
the data D.

» Assumes that all the instances (¢(x™), yM), (p(xP), 1), ... (o(x(™, y(™)) in D are all
independent and identically distributed (iid)
» Thus, Likelihood is the probability of D under iid assumption: w = max L(D,w) =
0

m D () m 1 (o 'Y
argmaxw Hi:l p(-y |¢(X )) = argmaxw Hi:l (1+67(W)T¢(x(i))) (1+E(W)T¢(x(i))>
v\/"-'—
¥ YL tha ‘LO"‘;‘"
o/x""
fe(y=1]%") W" / )
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Training LR Reeal Z,\\';o_‘fj

-2 ?;ba('f;)
@ Thus, Maximum Likelihood Estimator for w is

W = argmax L(D,w) = argmvgxﬁp(y(i)|¢(x(i))) 'J‘av(q l:j*‘,;(*p)

i=1

NS S AT
‘argmaxﬂ<m) (W) ()
= argmax ﬁ <fw (x(i)))y

-]

i

| (1 _f (X(i)>> s

@ Maximizing the likelihood Pr(D;w) w.r.t w, is the same as minimizing the negative
log-likelihood E(w) = —= log Pr(D; w) w.r.t w.
» Derive the expression for E(w).
» E(w) is called the cross-entropy loss function
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Minimizing negative Log-likelihood for LR 1ow L Heavs - 00(')\0.‘3
2 8 A
@ The Cross-entropy Loss function: dhen Hns s pNNT "‘3

e g )
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?"o () A;\-;alf:j - ’?J() o

%“J\, ,tns Qf dah‘

September 29, 2016 5/17

}
Viewt L\J wedel

"https://en.wikipedia.org/wiki/Cross_entropy




_ Z-U [J(fo(ﬂ' )'(' (r- Y >U \’f‘u("'»
0]
£ol2) - e & 1~ fa(x) = —é"ﬁg

l¥e '~ (£ €

S \

NIy Wdf[ﬂ': ‘M(C\" it ;35 () )




Minimizing negative Log-likelihood for LR o) disteibmhon”
« e
@ The Cross-entropy Loss function: "obse-w‘-d‘/zm‘r\ ﬂ,o(\/:l )’X-( ))

ap¥® w s A
g&o E(w) = - [%7 3 <y<,-> log fy Xm) + (1’—7’)) log <1 — f (Xm)))] (1)
\ —

i=

«—
or with some simplification, M0d¢‘> o‘\s\?ikuhoﬂ VYM (\, <] [_LUD

E(w)=— [l Z (y(f)WTqS(x(f)) — log (1 + exp (WTX(i)>>> (2
Mg Ner~y~"" “U‘g:‘ +
ke usmgned dehante ooy o ke
@ Cross-entropy! is the average number of bits needed to identify an event (example x)
drawn from the (data) set D, if a coding scheme is used that is optimized for a modeled
probability distribution Pr (y|w, ¢(.)), rather than the ‘true’ distribution Pr(y|D).

)

E(w) = Epy(yip) | — log Pr (ylw, ¢(.)) (3)
%m- it:\ 3Ty ]

"https://en.wikipedia.org/wiki/Cross_entropy
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Gradient descent for LR

@ No closed form solution to the cross-entropy loss

GMLE — argmvin _ [;17 i (y(f) log fw (x(")) + (1 - y(i)> log (1 — fw (x(i)))>] (4)

@ Apply gradient descent with w(kt1) = wk — nVE(W )

EIGERPR R (IR

\I‘

% \\,:o. (- u\*> v(‘}s(\ £ o ﬁ)

o '\ki ’e‘)
\}-}3 %\@\ V(D /gw(,LCtv\) %&"i %(%_ (-5 (-ﬂ)((%ﬁ)

W
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Gradient descent for LR

@ No closed form solution to the cross-entropy loss
1 ) . ) )
WMLE _ in— | — (7) () _ _ ()
W = argmin [m Zl <y log fw (x ) + (1 y ) log (1 fw (x )))] 4)
P

@ Apply gradient descent with w(kt1) = wk — nVE (wk>
© The descent update

VE(W) = — [niq zm: < DV log fur (x<">) T (1 - y<">) V log (1 ~ fu (x(i)))>:| (5)

i=1
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Gradient descent for LR
@ No closed form solution to the cross-entropy loss

GMLE — argmvin _ [;17 i (y(f) log fw (x(")> + (1 - y(i)> log (1 — fw (x(i)))>] (4)

i=1

@ Apply gradient descent with w(kt1) = wk — nVE (wk)
© The descent update

m

_VE(wW) = -1 [niq 3 <y<.~>v log fu (x7) + (1= y17) Vg (1 — fu (xo))))} (5)

i=1

Q Vfy (x(i)> = ¢(x) (M)

1+e— (W) To(x()
=
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Gradient descent for LR
@ No closed form solution to the cross-entropy loss

GMLE — argmvin _ [;17 i (y(f) log fw (x(")> + (1 - y(i)> log (1 — fw (x(i)))>] (4)

i=1
@ Apply gradient descent with w(kt1) = wk — nVE (Wk)
© The descent update

m

—nVE(w)=—n |:ni7 Z (y(i)V log fw (x(i)) + (1 - y(f)) V log (1 — fw (x(i)))>:| (5)

i=1

Q Vfy (x(i)> = ¢(x) (M)

1+e— (W) To(x()

=
2
. D\ o (W) T(x D
@ Viogfhy (x(1) = o(x(7)e )" )(m) and
2
e (x)) = —o(x® 1
Viog (1 fw(x) = —0(x) | —5m
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Descent update for LR

m

_IVE(w) = —n {% 3 <y(f>v log fu (X(f)) + (1 - y(i)) V log (1 — fu (XU))))] (6)

i=1

2
Q Vg fy (x(i)) = ¢(x(i))e_(W)T¢(x(')) (m) and

2
nY ) — i 1
Viog (1 —h (X()>) = —9(x?) (m)
@ = The final descent update is
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Descent update for LR

m

—nVE(w)=—n |:% Z <y(i)V log fw (X(i)) + (1 — y(i)) V log (1 — fw (x(i))

i=1

N———
—
(@)}
~

. 2 i\l’\
Q Viogfy (x(i)) = ¢(x(i))e_(W)T¢(x(‘>) (ﬁml)wx - )) and x 53 \\,‘b ;’O
V lo 1-— f (X(’)> = —¢(X(’)) 1 ? V‘\é‘\ © s 53 @\ -Qct‘v
(b)) (i) (S
@ = The final descent update is \o'-'""‘ W <
&Y ¥ RS
© o
—
Ve =0 | 230 (- f (x7) o) )
3\ NEL v
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Gradient descent for LR
© The final descent update

—nVE(w) =1 [% > (y“ ~fu (x“’)) ¢<x<">>] (8)
i=1
@ The iterative update rule: (hqko. Fa-C\,:Ga-'- l“'“"hmmt %‘GA'CNI: :‘F:-sso>
e D) nlvz (w . (X(o)) o(x0) )

=1
1
@ Stochastic version of the same: (Mahou" \'“?] emenk aEaif:rh f:;h:jd?

Wl _ ok +n(y<>_f (50 2¢( X0 & (10
)

o7, wke n g 'S:w ( (."))¢[,xm)

© How would you contrast the updates with S|gh'l0|ée(|?§ ) against those with the step
function (perceptron)?

=wk+77
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Sigmoid (LR) vs. step function (perceptron)
@ Stochastic update for step fn (perceptron) with y{) € {—1,1}: Pick any example
. . T ] ]
(39,49, for which sign ((wm) p (xw)) o
WD = w4y (x0) (1)
1’“‘"‘“5 bused G0 SN Msmatch

@ Stochastic update for sigmoid fn (LR) with y{) € {0, 1}:
Pick any example (x(i),y(i)>, for which |f« ( (’)> YD > 0.5,

wlktD) — wk 4 y<'>—fk(x 7)) p(x?) (12)

(k*) k {(Z(‘)U) (Ed(\)u +1,D¢(-1|) penale, = based on c:”'

e 80"7
@ Recall: (12) is also the stochastic update for linear regression! (12) is a charac?’nstlc
update for generalized linear models of which perceptron, linear regression and logistic

are special cases. g (,)'T (01')1, @

*https://en.wikipedia.org/wiki/Generalized_linear_model
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Regularized LR and its Probabilistic Interpretation

© The Regularized (Logistic) Cross-Entropy Loss function:

E(w)=— |:%i <y(i) log fw (x(i)> + (1 — y(’)> log (1 — fw (X(i)>))] + %HWH%

i=1

—_—

(13)
@ Motivations: Avoiding overfitting by discouraging large values of w; for every j.
© Probabilistic Explanation? J,
TN To elp genesabze Wl
e
PY(\}-J/(H!);): B4 qusf“—) ’ r a 4o new date ’ab

Need: B(o)... st R(l.0)< R(OWIFE) = L[pIO)(

hos Swwlav frsm as 70,
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Regularized LR and its Probabilistic Interpretation

© The Regularized (Logistic) Cross-Entropy Loss function:

1 ) ) ) ) Y
- | = (i) (@) _ ) _ (@) AN 2
E(w) - ; <y log fw (x ) + (1 y ) log (1 fw (x ))) + 2meH2
(13)
@ Motivations: Avoiding overfitting by discouraging large values of w; for every .

© Probabilistic Explanation? A Bayesian Posterior probabilistic explanation to regularized
LR (next)

© We will reinvoke Bayesian (Parameter) Estimation

Pe)=W(0, 3+ D& v e(:r—, 2

~oughly
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Bayesian Inference For
Logistic Regression

o (= J ® ® E DAl



MAP Estimation and regularized LR

@ Recall the multivariate Gaussian (Normal) Distribution:

Nw;p,Y) = —2—e 3= ETHW) \when 3 € RMXM s positive-definite and

(2m)Z |22

weRrm
@ Suppose we want each |w; to be bounded roughly by +3
© Then by the 3 — o rule we let w ~ A(w;0, /) where /is an m x m identity matrix

0 :Pr(w)z—l,{e Wiz . Nmt eapresson /F'n ?((‘DIU‘) £ Ahen

2z

B dowe R (W Do< R(D)) fr(w)

W*’ entxopy 'PSept?z\er wll = - —



MAP estimation and regularized LR

@ Recall the MLE for LR: w = argmax L(D; w)

= argmvsxﬁ (fw <X(i))>y(i) (1 i (X(i)>)
i=1

@ Now the MAP for LR: w = argmax Pr(w)L(D;w) =
w

Qo )3j12((w7+ lua Lpw

1—y®

I 4 a4 September 29, 2016

13 /17



MAP estimation and regularized LR

@ Recall the MLE for LR: w = argmax L(D;w)

m y(® 1—y®
= argmvexH (fw <X(i))> <1 — fw x(’)>)
(D;

© Now the MAP for LR: w = argmax Pr(w)L(D;w) =

argmax 21 T e 3wl ﬁ <fw <X("))>y() (1 —f, (X(i))>
( F) ;i/]'F'\/’—// _w c.mssqn@
<oy log (e %1 ) mCooes Erkepy 2SI
2

“ oA L2TA) Can boe ra—nawj

(1=y7)
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MAP estimation and regularized LR

@ FROM MAP for LR: w = argmax Pr(w)L(D, w)
w

() 71—y
=argmv3x(277r1)§e_%”w”§ﬁ(fw<x(i)>>y <1_fw(x<o>> ’

=1
..... Taking — = log(.) transformation,

Q@ TO M_in_of the Regularized Logistic (Cross-Entropy) Loss function:

S = argmin — {% > <y<f> og fr (x7) + (1= ) tog (1 (xw))ﬂ FoIwWE a9

i=1

—

m

where we have ignored —%7 log <27”> 2) since this term is independent of w.

Thus, MAP W can be found by minimizing the Regularized Cross Entropy Error
Fut 1 Poshsn W (0lD) 15 Goussian |
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Gradient descent for Regularized LR

o (= J ® ® E DAl



Gradient descent for Regularized LR

@ The final descent update

—nVE(w) =1 !% > (%") — fu (x“))) p(x7) — )\w] (15)
i=1 -
@ The iterative update rule:
kD) ks | LS (0 - (0 M) _ \wk
wiktD) — +n|:m;<y fwk<X ))qﬁ(x ) ﬂ] (16)
§\w\n\li‘j

© Stochastic version of the same:

W) = b (0 1 (x0) ) ) (17
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Extension to multi-class logistic

@ Eachclass c=1,2,..., K— 1 can have a different weight vector
[Wc,la wC,2a e awc,ka s vWC,K—l] and

e (WO T(x)

p(Y = dé(x)) = ——
1Y e o0
k=1

forc=1,...,K—1 so that

p(Y = K|6(x)) = —m

1+ Z o= (Wi Te(x)
k=1
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Alternative (equivalent) extension to multi-class logistic

@ Eachclass c=1,2,..., K can have a different weight vector (w1, wc2..

o (W) T6(x)
p(Y = cl(x)) = —

3 e 060

k=1

forc=1,...,K

.Wc,p) and
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