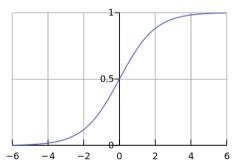
Lecture 17: Logistic Regression contd.

Instructor: Prof. Ganesh Ramakrishnan

Sigmoidal (perceptron) Classifier

- (Binary) Logistic Regression, abbreviated as LR is a single node perceptron-like classifier, but with....
 - ▶ $sign\left((\mathbf{w}^*)^T\phi(\mathbf{x})\right)$ replaced by $g\left((\mathbf{w}^*)^T\phi(\mathbf{x})\right)$ where g(s) is sigmoid function: $g(s)=\frac{1}{1+e^{-s}}$
- - ▶ Then $Pr(y = 0|x) = 1 f_{\mathbf{w}}(\mathbf{x})$



Logistic Regression: The Sigmoidal (perceptron) Classifier

- $\textbf{ Estimator } \widehat{\mathbf{w}} \text{ is a function of the dataset } \\ \mathcal{D} = \left\{ (\phi(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\phi(\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \dots, (\phi(\mathbf{x}^{(m)}, \mathbf{y}^{(m)})) \right\}$
 - ightharpoonup Estimator $\widehat{\mathbf{w}}$ is meant to approximate the parameter \mathbf{w} .
- **②** Maximum Likelihood Estimator: Estimator $\widehat{\mathbf{w}}$ that maximizes the likelihood $L(\mathcal{D}; \mathbf{w})$ of the data \mathcal{D} .
 - Assumes that all the instances $(\phi(\mathbf{x}^{(1)}, y^{(1)}), (\phi(\mathbf{x}^{(2)}, y^{(2)}), \dots, (\phi(\mathbf{x}^{(m)}, y^{(m)}))$ in \mathcal{D} are all independent and identically distributed (iid)
 - lacktriangle Thus, Likelihood is the probability of ${\mathcal D}$ under iid assumption: $\hat{\mathbf w} = \max \ L({\mathcal D}, {\mathbf w}) =$

Logistic Regression: The Sigmoidal (perceptron) Classifier

- $\textbf{ Estimator } \widehat{\mathbf{w}} \text{ is a function of the dataset } \\ \mathcal{D} = \left\{ (\phi(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\phi(\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \dots, (\phi(\mathbf{x}^{(m)}, \mathbf{y}^{(m)})) \right\}$
 - **E**stimator $\widehat{\mathbf{w}}$ is meant to approximate the parameter \mathbf{w} .
- **3** Maximum Likelihood Estimator: Estimator $\widehat{\mathbf{w}}$ that maximizes the likelihood $L(\mathcal{D}; \mathbf{w})$ of the data \mathcal{D} .
 - Assumes that all the instances $(\phi(\mathbf{x}^{(1)}, y^{(1)}), (\phi(\mathbf{x}^{(2)}, y^{(2)}), \dots, (\phi(\mathbf{x}^{(m)}, y^{(m)}))$ in \mathcal{D} are all independent and identically distributed (iid)
 - lacktriangle Thus, Likelihood is the probability of $\mathcal D$ under iid assumption: $\hat{\mathbf w} = \max_{\mathbf w} \ L(\mathcal D, \mathbf w) = 0$

$$\operatorname{argmax}_{\mathbf{w}} \ \prod_{i=1}^{m} p(y^{(i)} | \phi(\mathbf{x}^{(i)})) = \operatorname{argmax}_{\mathbf{w}} \ \prod_{i=1}^{m} \left(\frac{1}{1 + e^{-(\mathbf{w})^T \phi(\mathbf{x}^{(i)})}}\right)^{y^{(i)}} \left(\frac{e^{-(\mathbf{w})^T \phi(\mathbf{x}^{(i)})}}{1 + e^{-(\mathbf{w})^T \phi(\mathbf{x}^{(i)})}}\right)^{1 - y^{(i)}}$$

Training LR

f 0 Thus, Maximum Likelihood Estimator for f w is

$$\begin{split} \hat{\mathbf{w}} &= \operatorname{argmax}_{\mathbf{w}} \ L(\mathcal{D}, \mathbf{w}) = \operatorname{argmax}_{\mathbf{w}} \prod_{i=1} p(\mathbf{y}^{(i)} | \phi(\mathbf{x}^{(i)})) \\ &= \operatorname{argmax}_{\mathbf{w}} \prod_{i=1}^{m} \left(\frac{1}{1 + e^{-\mathbf{w}^T \phi(\mathbf{x}^{(i)})}} \right)^{\mathbf{y}^{(i)}} \left(\frac{e^{-\mathbf{w}^T \phi(\mathbf{x}^{(i)})}}{1 + e^{-\mathbf{w}^T \phi(\mathbf{x}^{(i)})}} \right)^{1 - \mathbf{y}^{(i)}} \\ &= \operatorname{argmax}_{\mathbf{w}} \ \prod_{i=1}^{m} \left(f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) \right)^{\mathbf{y}^{(i)}} \left(1 - f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) \right)^{1 - \mathbf{y}^{(i)}} \end{split}$$

- ② Maximizing the likelihood $Pr(\mathcal{D}; \mathbf{w})$ w.r.t \mathbf{w} , is the same as minimizing the negative log-likelihood $E(\mathbf{w}) = -\frac{1}{m} \log Pr(\mathcal{D}; \mathbf{w})$ w.r.t \mathbf{w} .
 - ▶ Derive the expression for $E(\mathbf{w})$.
 - $ightharpoonup E(\mathbf{w})$ is called the cross-entropy loss function

Minimizing negative Log-likelihood for LR

The Cross-entropy Loss function:

5 / 17

¹https://en.wikipedia.org/wiki/Cross_entropy

Minimizing negative Log-likelihood for LR

The Cross-entropy Loss function:

$$E(\mathbf{w}) = -\left[\frac{1}{m}\sum_{i=1}^{m} \left(y^{(i)}\log f_{\mathbf{w}}\left(\mathbf{x}^{(i)}\right) + \left(1 - y^{(i)}\right)\log\left(1 - f_{\mathbf{w}}\left(\mathbf{x}^{(i)}\right)\right)\right)\right]$$
(1)

or with some simplification,

$$E(\mathbf{w}) = -\left[\frac{1}{m}\sum_{i=1}^{m} \left(y^{(i)}\mathbf{w}^{T}\phi(\mathbf{x}^{(i)}) - \log\left(1 + exp\left(\mathbf{w}^{T}\mathbf{x}^{(i)}\right)\right)\right)\right]$$
(2)

2 Cross-entropy is the average number of bits needed to identify an event (example x) drawn from the (data) set \mathcal{D} , if a coding scheme is used that is optimized for a modeled probability distribution $\Pr(y|\mathbf{w},\phi(.))$, rather than the 'true' distribution $\Pr(y|\mathcal{D})$.

$$E(\mathbf{w}) = \mathbf{E}_{\mathsf{Pr}(y|\mathcal{D})} \left[-\log \mathsf{Pr} \left(y | \mathbf{w}, \phi(.) \right) \right]$$
(3)

5 / 17

¹https://en.wikipedia.org/wiki/Cross entropy

No closed form solution to the cross-entropy loss

$$\widehat{\mathbf{w}}^{MLE} = \underset{\mathbf{w}}{\operatorname{argmin}} - \left[\frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} \log f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) + \left(1 - y^{(i)} \right) \log \left(1 - f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) \right) \right) \right]$$
(4)

② Apply gradient descent with $\mathbf{w}^{(k+1)} = \mathbf{w}^k - \eta \nabla E(\mathbf{w}^k)$

No closed form solution to the cross-entropy loss

$$\widehat{\mathbf{w}}^{MLE} = \underset{\mathbf{w}}{\operatorname{argmin}} - \left[\frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} \log f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) + \left(1 - y^{(i)} \right) \log \left(1 - f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) \right) \right) \right]$$
(4)

- $oldsymbol{2}$ Apply gradient descent with $\mathbf{w}^{(k+1)} = \mathbf{w}^k \eta
 abla \mathcal{E}\left(\mathbf{w}^k
 ight)$
- The descent update

$$-\eta \nabla E(\mathbf{w}) = -\eta \left[\frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} \nabla \log f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) + \left(1 - y^{(i)} \right) \nabla \log \left(1 - f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) \right) \right) \right]$$
 (5)

No closed form solution to the cross-entropy loss

$$\widehat{\mathbf{w}}^{MLE} = \underset{\mathbf{w}}{\operatorname{argmin}} - \left[\frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} \log f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) + \left(1 - y^{(i)} \right) \log \left(1 - f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) \right) \right) \right]$$
(4)

- ② Apply gradient descent with $\mathbf{w}^{(k+1)} = \mathbf{w}^k \eta
 abla \mathsf{E}\left(\mathbf{w}^k
 ight)$
- The descent update

$$-\eta \nabla E(\mathbf{w}) = -\eta \left[\frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} \nabla \log f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) + \left(1 - y^{(i)} \right) \nabla \log \left(1 - f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) \right) \right) \right]$$
 (5)

No closed form solution to the cross-entropy loss

$$\widehat{\mathbf{w}}^{MLE} = \underset{\mathbf{w}}{\operatorname{argmin}} - \left[\frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} \log f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) + \left(1 - y^{(i)} \right) \log \left(1 - f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) \right) \right) \right]$$
(4)

- **②** Apply gradient descent with $\mathbf{w}^{(k+1)} = \mathbf{w}^k \eta \nabla E(\mathbf{w}^k)$
- The descent update

$$-\eta \nabla E(\mathbf{w}) = -\eta \left[\frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} \nabla \log f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) + \left(1 - y^{(i)} \right) \nabla \log \left(1 - f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) \right) \right) \right]$$
 (5)

- $\nabla f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) = \phi(\mathbf{x}^{(i)}) \left(\frac{e^{-(\mathbf{w})^T \phi(\mathbf{x}^{(i)})}}{1 + e^{-(\mathbf{w})^T \phi(\mathbf{x}^{(i)})}} \right)$

$$\nabla \log \left(1 - f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) \right) = -\phi(\mathbf{x}^{(i)}) \left(\frac{1}{1 + e^{-(\mathbf{w})^T \phi(\mathbf{x}^{(i)})}} \right)^2$$

Descent update for LR

$$-\eta \nabla E(\mathbf{w}) = -\eta \left[\frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} \nabla \log f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) + \left(1 - y^{(i)} \right) \nabla \log \left(1 - f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) \right) \right) \right]$$
(6)

- $\nabla \log f_{\mathbf{w}}\left(\mathbf{x}^{(i)}\right) = \phi(\mathbf{x}^{(i)})e^{-(\mathbf{w})^{T}\phi(\mathbf{x}^{(i)})}\left(\frac{1}{1+e^{-(\mathbf{w})^{T}\phi(\mathbf{x}^{(i)})}}\right)^{2} \text{ and }$ $\nabla \log \left(1 f_{\mathbf{w}}\left(\mathbf{x}^{(i)}\right)\right) = -\phi(\mathbf{x}^{(i)})\left(\frac{1}{1+e^{-(\mathbf{w})^{T}\phi(\mathbf{x}^{(i)})}}\right)^{2}$

Descent update for LR

$$-\eta \nabla E(\mathbf{w}) = -\eta \left[\frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} \nabla \log f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) + \left(1 - y^{(i)} \right) \nabla \log \left(1 - f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) \right) \right) \right]$$
(6)

- $\nabla \log f_{\mathbf{w}}\left(\mathbf{x}^{(i)}\right) = \phi(\mathbf{x}^{(i)}) e^{-(\mathbf{w})^T \phi(\mathbf{x}^{(i)})} \left(\frac{1}{1 + e^{-(\mathbf{w})^T \phi(\mathbf{x}^{(i)})}}\right)^2 \text{ and }$ $\nabla \log \left(1 f_{\mathbf{w}}\left(\mathbf{x}^{(i)}\right)\right) = -\phi(\mathbf{x}^{(i)}) \left(\frac{1}{1 + e^{-(\mathbf{w})^T \phi(\mathbf{x}^{(i)})}}\right)^2$

$$-\eta \nabla E(\mathbf{w}) = \eta \left[\frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} - f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) \right) \phi(\mathbf{x}^{(i)}) \right]$$
(7)

The final descent update

$$-\eta \nabla E(\mathbf{w}) = \eta \left[\frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} - f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) \right) \phi(\mathbf{x}^{(i)}) \right]$$
(8)

The iterative update rule:

$$\mathbf{w}^{(k+1)} = \mathbf{w}^k + \eta \left[\frac{1}{m} \sum_{i=1}^m \left(y^{(i)} - f_{\mathbf{w}^k} \left(\mathbf{x}^{(i)} \right) \right) \phi(\mathbf{x}^{(i)}) \right]$$
(9)

Stochastic version of the same:

$$\mathbf{w}^{(k+1)} = \mathbf{w}^k + \eta \left(y^{(i)} - f_{\mathbf{w}^k} \left(\mathbf{x}^{(i)} \right) \right) \phi(\mathbf{x}^{(i)})$$
(10)

• How would you contrast the updates with sigmoid (LR) against those with the step function (perceptron)?

Sigmoid (LR) vs. step function (perceptron)

• Stochastic update for step fn (perceptron) with $y^{(i)} \in \{-1, 1\}$: Pick any example $\left(\mathbf{x}^{(i)}, y^{(i)}\right)$, for which $sign\left(\left(\mathbf{w}^{(k)}\right)^T \phi\left(\mathbf{x}^{(i)}\right)\right) \neq y^{(i)}$. $\mathbf{w}^{(k+1)} = \mathbf{w}^k + n \mathbf{v}^{(i)} \phi(\mathbf{x}^{(i)})$ (11)

Stochastic update for sigmoid fn (LR) with $y^{(i)} \in \{0, 1\}$: Pick any example $\left(\mathbf{x}^{(i)}, y^{(i)}\right)$, for which $|f_{\mathbf{w}^k}\left(\mathbf{x}^{(i)}\right) - y^{(i)}| > 0.5$.

$$\mathbf{w}^{(k+1)} = \mathbf{w}^k + \eta \left(y^{(i)} - f_{\mathbf{w}^k} \left(\mathbf{x}^{(i)} \right) \right) \phi(\mathbf{x}^{(i)})$$
(12)

Recall: (12) is also the stochastic update for linear regression! (12) is a characteristic update for generalized linear models² of which perceptron, linear regression and logistic are special cases.

9 / 17

²https://en.wikipedia.org/wiki/Generalized linear model

Regularized LR and its Probabilistic Interpretation

• The Regularized (Logistic) Cross-Entropy Loss function:

$$E(\mathbf{w}) = -\left[\frac{1}{m}\sum_{i=1}^{m} \left(y^{(i)}\log f_{\mathbf{w}}\left(\mathbf{x}^{(i)}\right) + \left(1 - y^{(i)}\right)\log\left(1 - f_{\mathbf{w}}\left(\mathbf{x}^{(i)}\right)\right)\right)\right] + \frac{\lambda}{2m}\|\mathbf{w}\|_{2}^{2}$$
(13)

- Motivations: Avoiding overfitting by discouraging large values of w_j for every j.
- Probabilistic Explanation?

Regularized LR and its Probabilistic Interpretation

• The Regularized (Logistic) Cross-Entropy Loss function:

$$E(\mathbf{w}) = -\left[\frac{1}{m}\sum_{i=1}^{m} \left(y^{(i)}\log f_{\mathbf{w}}\left(\mathbf{x}^{(i)}\right) + \left(1 - y^{(i)}\right)\log\left(1 - f_{\mathbf{w}}\left(\mathbf{x}^{(i)}\right)\right)\right)\right] + \frac{\lambda}{2m}\|\mathbf{w}\|_{2}^{2}$$
(13)

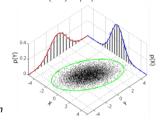
- Motivations: Avoiding overfitting by discouraging large values of w_i for every j.
- Probabilistic Explanation? A Bayesian Posterior probabilistic explanation to regularized LR (next)
- We will reinvoke Bayesian (Parameter) Estimation

Bayesian Inference For Logistic Regression

MAP Estimation and regularized LR

• Recall the multivariate Gaussian (Normal) Distribution:

$$\mathcal{N}(\mathbf{w}; \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{m}{2}} |\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(\mathbf{w} - \mu)^T \Sigma^{-1}(\mathbf{w} - \mu)}$$
 when $\Sigma \in \Re^{m \times m}$ is positive-definite and



- $\mu \in \Re^m$
- ② Suppose we want each $|w_i|$ to be bounded roughly by $\pm \frac{3}{\lambda}$
- **1** Then by the $3-\sigma$ rule we let $\mathbf{w} \sim \mathcal{N}(\mathbf{w}; 0, \frac{1}{\lambda}I)$ where I is an $m \times m$ identity matrix

MAP estimation and regularized LR

- ② Recall the MLE for LR: $\hat{\mathbf{w}} = \operatorname{argmax} L(\mathcal{D}; \mathbf{w})$

$$= \operatorname{argmax} \prod_{i=1}^{m} \left(f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) \right)^{y^{(i)}} \left(1 - f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) \right)^{1 - y^{(i)}}$$

 $\textbf{ 0} \ \, \mathsf{Now the MAP for LR:} \ \, \tilde{\mathbf{w}} = \mathop{\mathsf{argmax}}_{\mathbf{w}} \mathsf{Pr}(\mathbf{w}) \mathit{L}(\mathcal{D}; \mathbf{w}) = \\$

MAP estimation and regularized LR

- ② Recall the MLE for LR: $\hat{\mathbf{w}} = \operatorname{argmax} L(\mathcal{D}; \mathbf{w})$

$$= \operatorname{argmax} \prod_{i=1}^{m} \left(f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) \right)^{y^{(i)}} \left(1 - f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) \right)^{1 - y^{(i)}}$$

 $\textbf{ 0} \ \, \mathsf{Now the MAP for LR:} \ \, \tilde{\mathbf{w}} = \mathop{\mathsf{argmax}}_{\mathbf{w}} \mathsf{Pr}(\mathbf{w}) \mathit{L}(\mathcal{D}; \mathbf{w}) = \\$

$$\operatorname*{argmax}_{\mathbf{w}} \frac{1}{\left(\frac{2\pi}{\lambda}\right)^{\frac{m}{2}}} e^{-\frac{\lambda}{2}\|\mathbf{w}\|_2^2} \prod_{i=1}^m \left(f_{\mathbf{w}}\left(\mathbf{x}^{(i)}\right)\right)^{y^{(i)}} \left(1 - f_{\mathbf{w}}\left(\mathbf{x}^{(i)}\right)\right)^{(1-y^{(i)})}$$

MAP estimation and regularized LR

 $\textbf{9} \ \ \textbf{FROM} \ \ \textbf{MAP for LR:} \ \ \tilde{\mathbf{w}} = \arg\max_{\mathbf{w}} \Pr(\mathbf{w}) L(\mathcal{D}, \mathbf{w})$

$$= \operatorname*{argmax}_{\mathbf{w}} \frac{1}{\left(\frac{2\pi}{\lambda}\right)^{\frac{m}{2}}} e^{-\frac{\lambda}{2}\|\mathbf{w}\|_2^2} \prod_{i=1}^m \left(f_{\mathbf{w}}\left(\mathbf{x}^{(i)}\right)\right)^{y^{(i)}} \left(1 - f_{\mathbf{w}}\left(\mathbf{x}^{(i)}\right)\right)^{1-y^{(i)}} \\ \ldots . \operatorname{Taking} -\frac{1}{m} \log(.) \text{ transformation,}$$

TO Min of the Regularized Logistic (Cross-Entropy) Loss function:

$$\tilde{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} - \left[\frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} \log f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) + \left(1 - y^{(i)} \right) \log \left(1 - f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) \right) \right) \right] + \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2}$$
(14)

where we have ignored $-\frac{1}{m}\log\left(\left(\frac{2\pi}{\lambda}\right)^{\frac{m}{2}}\right)$ since this term is independent of \mathbf{w}Thus, MAP $\tilde{\mathbf{w}}$ can be found by minimizing the *Regularized Cross Entropy Error*

Gradient descent for Regularized LR

Gradient descent for Regularized LR

The final descent update

$$-\eta \nabla E(\mathbf{w}) = \eta \left[\frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} - f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) \right) \phi(\mathbf{x}^{(i)}) - \lambda \mathbf{w} \right]$$
(15)

The iterative update rule:

$$\mathbf{w}^{(k+1)} = \mathbf{w}^k + \eta \left[\frac{1}{m} \sum_{i=1}^m \left(y^{(i)} - f_{\mathbf{w}^k} \left(\mathbf{x}^{(i)} \right) \right) \phi(\mathbf{x}^{(i)}) - \lambda \mathbf{w}^k \right]$$
(16)

Stochastic version of the same:

$$\mathbf{w}^{(k+1)} = \mathbf{w}^k + \eta \left(y^{(i)} - f_{\mathbf{w}^k} \left(\mathbf{x}^{(i)} \right) \right) \phi(\mathbf{x}^{(i)}) - \eta \lambda \mathbf{w}^k$$
(17)

Extension to multi-class logistic

• Each class $c=1,2,\ldots,K-1$ can have a different weight vector $[\mathbf{w}_{c,1},\mathbf{w}_{c,2},\ldots,\mathbf{w}_{c,k},\ldots,\mathbf{w}_{c,K-1}]$ and

$$p(Y = c | \phi(\mathbf{x})) = \frac{e^{-(\mathbf{w}_c)^T \phi(\mathbf{x})}}{1 + \sum_{k=1}^{K-1} e^{-(\mathbf{w}_k)^T \phi(\mathbf{x})}}$$

for $c = 1, \dots, K-1$ so that

$$p(Y = K | \phi(\mathbf{x})) = \frac{1}{1 + \sum_{k=1}^{K-1} e^{-(\mathbf{w}_k)^T \phi(\mathbf{x})}}$$

Alternative (equivalent) extension to multi-class logistic

• Each class c = 1, 2, ..., K can have a different weight vector $[\mathbf{w}_{c,1}, \mathbf{w}_{c,2} ... \mathbf{w}_{c,p}]$ and

$$p(Y = c | \phi(\mathbf{x})) = \frac{e^{-(\mathbf{w}_c)^T \phi(\mathbf{x})}}{\sum_{k=1}^K e^{-(\mathbf{w}_k)^T \phi(\mathbf{x})}}$$

for c = 1, ..., K.