Lecture 17: Logistic Regression contd.

Instructor: Prof. Ganesh Ramakrishnan



Sigmoidal (perceptron) Classifier

O (Binary) Logistic Regression, abbreviated as LR is a single node perceptron-like
classifier, but With

> sign ((w ) replaced by g ((w*)¢(x)) where g(s) is sigmoid function: g(s) = 5=
Q fu(x)= (( D) (x)) = m € [0,1] can be interpreted as Pr(y = 1|x)

» Then Priy =0|x) = 1 — fw(x)
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Logistic Regression: The Sigmoidal (perceptron) Classifier

@ Estimator w is a function of the dataset
D = {(6(xV,yV), (6(xD, y?), ... (o(x(™, ym)) }
» Estimator w is meant to approximate the parameter w.

@ Maximum Likelihood Estimator: Estimator w that maximizes the likelihood L(D;w) of
the data D.
» Assumes that all the instances (¢(x™), yM), (o(xP), Y1), ... (¢(x(™, y{™)) in D are all
independent and identically distributed (iid)
» Thus, Likelihood is the probability of D under iid assumption: w = max L(D,w) =

w
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D = {(6(xV,yV), (6(xD, y?), ... (o(x(™, ym)) }
» Estimator w is meant to approximate the parameter w.
@ Maximum Likelihood Estimator: Estimator w that maximizes the likelihood L(D;w) of
the data D.

» Assumes that all the instances (¢(x™), yM), (o(xP), Y1), ... (¢(x(™, y{™)) in D are all
independent and identically distributed (iid)
» Thus, Likelihood is the probability of D under iid assumption: w = max L(D,w) =
0
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1 ) — e
argmaXy, Hi:l p(y |(;5(X )) = argmaxy H;=1 (1+e,(w)r¢(x(i))) Tte 7o)
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Training LR

@ Thus, Maximum Likelihood Estimator for w is

W = argmax L(D’ W) — argmaxH p(y(i)|¢(x(i)))

i=1 .
oW o(x") ) 1=
)

S
= argmaxH <m> (W
(e (-et)”
e T () (1)
-

@ Maximizing the likelihood Pr(D;w) w.r.t w, is the same as minimizing the negative
log-likelihood E(w) = —2L log Pr(D; w) w.r.t w.
» Derive the expression for E(w).
» E(w) is called the cross-entropy loss function
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Minimizing negative Log-likelihood for LR
@ The Cross-entropy Loss function:

1https ://en.wikipedia.org/wiki/Cross_entropy o = = = = 9ac
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Minimizing negative Log-likelihood for LR
@ The Cross-entropy Loss function:

m

E(w) = — [; 3 <y<"> log fiv (x<">) + (1 - y<">) log <1 — (x<">)>>] (1)

i=1
or with some simplification,

m

E(w)=— [; Z (y(i)WTqS(x(i)) — log (1 + exp (WTX(i)>>>] 2)

i=1

@ Cross-entropy! is the average number of bits needed to identify an event (example x)
drawn from the (data) set D, if a coding scheme is used that is optimized for a modeled
probability distribution Pr (y|w, ¢(.)), rather than the ‘true’ distribution Pr(y|D).

E(w) = Epy(yip) [~ logPr (viw, 6(.))] (3)

"https://en.wikipedia.org/wiki/Cross_entropy
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Gradient descent for LR
@ No closed form solution to the cross-entropy loss

GMLE _ argm“i,n - [n% _i (y(f) log fu (x(i)) + (1 - y(i)> log (1 — fu (x(f)))>] 4)

@ Apply gradient descent with w(kt1) = wk — nVE(wk>
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Gradient descent for LR
@ No closed form solution to the cross-entropy loss

GMLE _ argm“i,n - [n% _i (y(f) log fu (x(i)> + (1 - y(i)> log (1 — fu (x(i)))>] 4)
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i=1
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Gradient descent for LR
@ No closed form solution to the cross-entropy loss

GMLE — argmvin _ [n% i (y(f) log fw (x(")> + (1 - y(i)> log (1 — fw (x(i)))>] (4)

i=1

@ Apply gradient descent with w(ktD) = wk — nVE (wk)
© The descent update

m

_VE(w) = —n [; 3 <y<.->v log fu (x7) + (1= y17) Vg (1 — fu (xo))))} (5)

i=1

Q Viw (x(i)> = ¢(x) (M)

I+e— (W) To(x(D)
=
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Gradient descent for LR
@ No closed form solution to the cross-entropy loss

= H 1 . i i i )
wMLE — argmin — [;’ Zl (y() log fw (x“) + (1 —y()> log (1 — fw (x()))>] 4)
@ Apply gradient descent with w(ktD) = wk — nVE (Wk)

© The descent update

—nVE(w) = —n |:; Z (y(i)V log fw (x(i)) + (1 - y(i)> V log (1 — fw (x(i)))>:| (5)

i=1

Q Viw (x(i)> = ¢(x) (M)

1+e— (W) To(x()
=

. 2
© Viogfy (x(">) = ¢(x()e=WTex) ( 1 ) and

14e— () Tox()
2

Vieg (1 — fy (x(f)> — —gb(x(f)) 1

1+e—(w) Top(x(D)
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Descent update for LR

m

_IVE(w) = —n {% 3 <y(i>v log fu (X(o) + (1 - y(i)) V log (1 — fu (XU))))] (6)

i=1

2
O Viogthy (X(l)) = ¢(X(l))e—(w)T¢(x(0) (m) and

2
Vlog (1 ~fw (X(')>) = —o(x) (m)

@ = The final descent update is
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Descent update for LR

m

_IVE(w) = —n {% 3 <y(i>v log fu (X(o) + (1 - y(i)) V log (1 — fu (XU))))] (6)

i=1

2
) Ny ()
O Viogfy (Xm) = p(x(D)e= (W) e >(m) and

2
_ D)) = —p(xDy [ —— L
Vlog (l Fu (X )) = —o(x") (1+e—<w>T¢<x(f)>)
@ = The final descent update is

m

—nVE(w [ Z( P~ o (x¢ ))¢(X(’))] (7)

SIH

1
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Gradient descent for LR
@ The final descent update

—nVE(w) =17 ll

@ The iterative update rule:

(kt1) _ lm
Wik _ [mZ(

i=1

@ Stochastic version of the same:

3
N
k<ﬁ
\h
—
"
N
N—
=
(2
=
C

e (x7)) ¢<x<">>] )

(x<">)) o(x7) (10)

© How would you contrast the updates with sigmoid (LR) against those with the step

function (perceptron)?
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Sigmoid (LR) vs. step function (perceptron)
@ Stochastic update for step fn (perceptron) with y) € {—1,1}: Pick any example
. . T ] .
(39,49, for which sign ((ww) p (xw)) £

Wik — w0 g(x) (1)

@ Stochastic update for sigmoid fn (LR) with y{) € {0, 1}:
Pick any example (x(i),y(i)>, for which |f« (X(i)) — y(i)| > 0.5.

wlkH) = wk <y<,-> — (X(i))> B(x) (12)

@ Recall: (12) is also the stochastic update for linear regression! (12) is a characteristic
update for generalized linear models? of which perceptron, linear regression and logistic
are special cases.

*https://en.wikipedia.org/wiki/Generalized_linear_model
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Regularized LR and its Probabilistic Interpretation

© The Regularized (Logistic) Cross-Entropy Loss function:

m
E(w)=— %; <y(i) log fw (x(i)> + (1 — y(i)> log (1 — fw (x(i)>)) + %HW“%
(13)
@ Motivations: Avoiding overfitting by discouraging large values of w; for every j.
© Probabilistic Explanation?
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Regularized LR and its Probabilistic Interpretation

© The Regularized (Logistic) Cross-Entropy Loss function:

1 ) ) ) ) Y
- _|= (i) (@) _ ) _ () AN 2
E(w) . ; <y log fw (x ) + (1 y ) log (1 fw (x >)> + 2meH2
(13)
@ Motivations: Avoiding overfitting by discouraging large values of w; for every j.

© Probabilistic Explanation? A Bayesian Posterior probabilistic explanation to regularized
LR (next)

© We will reinvoke Bayesian (Parameter) Estimation
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Bayesian Inference For
Logistic Regression



MAP Estimation and regularized LR

@ Recall the multivariate Gaussian (Normal) Distribution:

N(w;p,X) = mi—e 2w ST W) \yhen 3 € RMXM s positive-definite and
2 2

(x)d

e Rrm
@ Suppose we want each |w;| to be bounded roughly by &3
© Then by the 3 — o rule we let w ~ N(w;0, %I) where [is an m x m identity matrix
Q =Prw)=—4 e 2lIwl3

2my 2
X

D September 20, 2016 12 /17



MAP estimation and regularized LR

A 2
Q Pr(w) = —Lye 2l
)= s

@ Recall the MLE for LR: w = argmax L(D; w)

= argmvexﬁ (fw <X(i))>y(i) (1 i (X(i)>)
i=1

© Now the MAP for LR: w = argmax Pr(w)L(D;w) =
w

1—y®
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MAP estimation and regularized LR

A 2
Q Pr(w) = —Lye 2l
)= s

@ Recall the MLE for LR:

© Now the MAP for LR: w = argmax Pr(w)L(D;w) =
w
()

m _ (f))
L 3wl < 0 )y ( e () )O g
argmvex 2T7r ge 2111 fw <x ) 1—fw (x )
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MAP estimation and regularized LR

@ FROM MAP for LR: w = argmax Pr(w)L(D, w)

(i) 1y
= argmax (27})’; &3 wI3 ﬁ <fw (X(i)>>y <1 — fw (x(f)>> g

i=1
..... Taking — log(.) transformation,
@ TO Min of the Regularized Logistic (Cross-Entropy) Loss function:

& = argmin - {; > <y<f> og fu (x0) + (1= 77 tog (1~ & (xw))ﬂ F2wIE a4

i=1

m

where we have ignored —% log <27’T> 2> since this term is independent of w.

Thus, MAP w can be found by minimizing the Regularized Cross Entropy Error

e et 29, 30T T8 17



Gradient descent for Regularized LR

o F = = E DAl



Gradient descent for Regularized LR
@ The final descent update

—nVE(w)=n !% Z (y(i) — fw (X(i)>) P(x) — )\w] (15)

@ The iterative update rule:

wlktD) — |:% i < < f))) P(xD) — )\Wk] (16)

i=1
@ Stochastic version of the same:
wltD) — wk g <y(i) — Fogk (x(i)>) o(xD) — nAw* (17)
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Extension to multi-class logistic

@ Each class c=1,2,..., K— 1 can have a different weight vector
[Wc,la wC,2a e awc,ka s vWC,K—l] and

e (W) T(x)

p(Y=dp(x)) = ——
143 e 0ok
k=1

forc=1,...,K—1 so that

p(Y = KJ6(x) =

1+ Z o (Wi Te(x)
k=1

D September 20, 2016 16 / 17



Alternative (equivalent) extension to multi-class logistic

@ Eachclass c=1,2,..., K can have a different weight vector (w1, wc2..

o (W) T6(x)
p(Y = co(x)) =

3 e (060

k=1

forc=1,...,K

.W¢,p) and
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