Lecture 19 contd: Neural Network Training using Backpropagation, Convolutional And Recurrent Neural Networks

Instructor: Prof. Ganesh Ramakrishnan

OR using perceptron

AND using perceptron

x'Vy' using perceptron

How about XOR $((x' \lor y') \land (x \lor y))$?

Training a Neural Network

STEP 0: Pick a network architecture

- Number of input units: Dimension of features $\phi\left(\mathbf{x}^{(i)}\right)$.
- Number of output units: Number of classes.
- Reasonable default: 1 hidden layer, or if >1 hidden layer, have same number of hidden units in every layer.
- Number of hidden units in each layer a constant factor (3 or 4) of dimension of x.
- We will use
 - ▶ the smooth sigmoidal function $g(s) = \frac{1}{1+e^{-s}}$: We have now learnt how to train a single node sigmoidal (LR) neural network
 - ▶ instead of the non-smooth step function g(s) = 1 if $s \in [\theta, \infty)$ and g(s) = 0 otherwise.

High Level Overview of Backpropagation Algorithm for Training NN

- **1** Randomly initialize weights w_{ij}^{l} for $l=1,\ldots,L$, $i=1,\ldots,s_{l}$, $j=1,\ldots,s_{l+1}$.
- ② Implement forward propagation to get $f_w(\mathbf{x})$ for any $x \in \mathcal{D}$.
- Execute backpropagation
 - **1** by computing partial derivatives $\frac{\partial}{\partial w_{ii}^{(l)}} E(w)$ for $l=1,\ldots,L$, $i=1,\ldots,s_l$, $j=1,\ldots,s_{l+1}$.
 - ② and using gradient descent to try to minimize (non-convex) E(w) as a function of parameters \mathbf{w} .
- Verify that the cost function E(w) has indeed reduced, else resort to some random perturbation of weights w.

Intuition for Backpropagation

$$f(x, y, z) = (w_x x + w_y y) w_q + w_z z, \ q = w_x x + w_y y$$

At input (-3,7,-5):- (gradient of f w.r.t. v shown in red where $v \in \{w_x, w_y, w_z, w_q\}$)

Should we decrease w_v or should we increase w_x to decrease f?

Intuition for Backpropagation

Iteratively update the weights along the direction where Loss decreases.

Gradient Computation

• The Neural Network objective to be minimized:

$$E(\mathbf{w}) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} \log \left(\sigma_k^L \left(\mathbf{x}^{(i)} \right) \right) + \left(1 - y_k^{(i)} \right) \log \left(1 - \sigma_k^L \left(\mathbf{x}^{(i)} \right) \right) \right] + \frac{\lambda}{2m} \sum_{l=1}^{L} \sum_{i=1}^{s_{l-1}} \sum_{i=1}^{s_l} \left(w_{lj}^{\prime} \right)^2$$

$$(1)$$

Gradient Computation

• The Neural Network objective to be minimized:

$$E(\mathbf{w}) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} \log \left(\sigma_k^L \left(\mathbf{x}^{(i)} \right) \right) + \left(1 - y_k^{(i)} \right) \log \left(1 - \sigma_k^L \left(\mathbf{x}^{(i)} \right) \right) \right] + \frac{\lambda}{2m} \sum_{l=1}^{L} \sum_{i=1}^{s_{l-1}} \sum_{j=1}^{s_l} \left(w_{lj}^l \right)^2$$

$$(1)$$

•
$$sum_j^l = \sum_{k=1}^{s_{i-1}} w_{kj}^l \sigma_k^{l-1}$$
 and $\sigma_i^l = \frac{1}{1 + e^{-sum_i^l}}$

$$\bullet \ \frac{\partial E}{\partial w_{ij}^l} = \frac{\partial E}{\partial \sigma_j^l} \frac{\partial \sigma_j^l}{\partial sum_j^l} \frac{\partial sum_j^l}{\partial w_{ij}^l}$$

$$\bullet \ \frac{\partial \mathit{sum}_{j}^{l}}{\partial \mathit{w}_{ij}^{l}} = \frac{\partial}{\partial \mathit{w}_{ij}^{l}} \left(\sum_{k=1}^{\mathit{s}_{l-1}} \mathit{w}_{kj}^{l} \sigma_{k}^{l-1} \right) = \sigma_{i}^{l-1}$$

$$\bullet \ \frac{\partial \sigma_j^l}{\partial \mathit{sum}_j^l} = \left(\frac{1}{1 + e^{-\mathit{sum}_i^l}}\right) \left(1 - \frac{1}{1 + e^{-\mathit{sum}_i^l}}\right)$$

October 6, 2016 13 / 14

• For a single example (\mathbf{x}, y) :

$$-\left[\sum_{k=1}^{K} y_k \log \left(\sigma_k^L(\mathbf{x})\right) + (1 - y_k) \log \left(1 - \sigma_k^L(\mathbf{x})\right)\right] + \frac{\lambda}{2m} \sum_{l=1}^{L} \sum_{i=1}^{s_{l-1}} \sum_{j=1}^{s_l} \left(w'_{ij}\right)^2$$

$$(2)$$

$$\bullet \ \frac{\partial E}{\partial \sigma_j^l} = \sum_{p=1}^{s_{j+1}} \frac{\partial E}{\partial sum_p^{l+1}} \frac{\partial sum_p^{l+1}}{\partial \sigma_j^l} = \sum_{p=1}^{s_{j+1}} \frac{\partial E}{\partial \sigma_j^{l+1}} \frac{\partial \sigma_j^{l+1}}{\partial sum_p^{l+1}} w_{jp}^{l+1} \text{ since } \frac{\partial sum_p^{l+1}}{\partial \sigma_j^l} = w_{jp}^{l+1}$$

$$\bullet \ \frac{\partial E}{\partial \sigma_j^L} = -\frac{y_j}{\sigma_j^L} - \frac{1 - y_j}{1 - \sigma_j^L}$$