Lecture 20 contd: Neural Network Training using Backpropagation, Convolutional And Recurrent Neural Networks

Instructor: Prof. Ganesh Ramakrishnan

Training a Neural Network

STEP 0: Pick a network architecture

- Number of input units: Dimension of features $\phi\left(\mathbf{x}^{(i)}\right)$.
- Number of output units: Number of classes.
- Reasonable default: 1 hidden layer, or if >1 hidden layer, have same number of hidden units in every layer.
- Number of hidden units in each layer a constant factor (3 or 4) of dimension of x.
- We will use
 - ▶ the smooth sigmoidal function $g(s) = \frac{1}{1+e^{-s}}$: We have now learnt how to train a single node sigmoidal (LR) neural network
 - ▶ instead of the non-smooth step function g(s) = 1 if $s \in [\theta, \infty)$ and g(s) = 0 otherwise.

High Level Overview of Backpropagation Algorithm for Training NN

- **1** Randomly initialize weights w_{ij}^l for $l=1,\ldots,L$, $i=1,\ldots,s_l$, $j=1,\ldots,s_{l+1}$.
- ② Implement forward propagation to get $f_w(\mathbf{x})$ for any $x \in \mathcal{D}$.
- **Solution** Execute backpropagation
 - **1** by computing partial derivatives $\frac{\partial}{\partial w_{il}^{(l)}} E(w)$ for $l=1,\ldots,L$, $i=1,\ldots,s_{l}, j=1,\ldots,s_{l+1}$.
 - 2 and using gradient descent to try to minimize (non-convex) E(w) as a function of parameters \mathbf{w} .

$$w'_{ij} = w'_{ij} - \eta \frac{\partial}{\partial w_{ij}^{(f)}} E(w)$$

• Verify that the cost function E(w) has indeed reduced, else resort to some random perturbation of weights w.

The Backpropagation Algorithm

Iteratively update the weights along the direction where Loss decreases.

Gradient Computation

• The Neural Network objective to be minimized:

$$E(\mathbf{w}) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} \log \left(\sigma_k^L \left(\mathbf{x}^{(i)} \right) \right) + \left(1 - y_k^{(i)} \right) \log \left(1 - \sigma_k^L \left(\mathbf{x}^{(i)} \right) \right) \right] + \frac{\lambda}{2m} \sum_{l=1}^{L} \sum_{i=1}^{s_{l-1}} \sum_{i=1}^{s_l} \left(w_{lj}^l \right)^2$$

$$(1)$$

Gradient Computation

• The Neural Network objective to be minimized:

$$E(\mathbf{w}) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} \log \left(\sigma_k^L \left(\mathbf{x}^{(i)} \right) \right) + \left(1 - y_k^{(i)} \right) \log \left(1 - \sigma_k^L \left(\mathbf{x}^{(i)} \right) \right) \right] + \frac{\lambda}{2m} \sum_{l=1}^{L} \sum_{i=1}^{s_{l-1}} \sum_{i=1}^{s_l} \left(w_{lj}' \right)^2$$

$$(1)$$

•
$$sum'_j = \sum_{k=1}^{s_{i-1}} w'_{kj} \sigma_k^{l-1}$$
 and $\sigma_i^l = \frac{1}{1 + e^{-sum'_i}}$

$$\bullet \ \frac{\partial \mathbf{E}}{\partial \mathbf{w_{ij}^l}} = \frac{\partial \mathbf{E}}{\partial \sigma_{\mathbf{j}}^l} \frac{\partial \sigma_{\mathbf{j}}^l}{\partial \mathbf{sum_{j}^l}} \frac{\partial \mathbf{sum_{j}^l}}{\partial \mathbf{w_{ij}^l}} + \frac{\lambda}{2m} w_{ij}^l$$

$$\bullet \ \frac{\partial \sigma_{\mathbf{j}}^{\mathbf{l}}}{\partial \mathbf{sum}_{\mathbf{j}}^{\mathbf{l}}} = \left(\frac{1}{1 + e^{-sum_{i}^{\mathbf{l}}}}\right) \left(1 - \frac{1}{1 + e^{-sum_{i}^{\mathbf{l}}}}\right) = \sigma_{\mathbf{j}}^{\mathbf{l}} (\mathbf{1} - \sigma_{\mathbf{j}}^{\mathbf{l}})$$

$$\bullet \ \frac{\partial \mathbf{sum}_{\mathbf{j}}^{\mathbf{l}}}{\partial \mathbf{w}_{\mathbf{i}\mathbf{j}}^{\mathbf{l}}} = \frac{\partial}{\partial w_{ij}^{l}} \left(\sum_{k=1}^{s_{l-1}} w_{kj}^{l} \sigma_{k}^{l-1} \right) = \sigma_{\mathbf{i}}^{\mathbf{l}-\mathbf{1}}$$

• For a single example (\mathbf{x}, y) :

$$-\left[\sum_{k=1}^{K} y_k \log \left(\sigma_k^L(\mathbf{x})\right) + (1 - y_k) \log \left(1 - \sigma_k^L(\mathbf{x})\right)\right] + \frac{\lambda}{2m} \sum_{l=1}^{L} \sum_{i=1}^{s_{l-1}} \sum_{j=1}^{s_l} \left(w'_{ij}\right)^2$$

$$(2)$$

$$\bullet \ \frac{\partial \mathbf{E}}{\partial \sigma_{\mathbf{j}}^{\mathbf{l}}} = \sum_{p=1}^{3l+1} \frac{\partial E}{\partial sum_{p}^{l+1}} \frac{\partial sum_{p}^{l+1}}{\partial \sigma_{\mathbf{j}}^{l}} = \sum_{p=1}^{3l+1} \frac{\partial \mathbf{E}}{\partial \sigma_{\mathbf{p}}^{\mathbf{l}+1}} \frac{\partial \sigma_{\mathbf{p}}^{\mathbf{l}+1}}{\partial \sigma_{\mathbf{p}}^{\mathbf{l}+1}} w_{jp}^{l+1} \text{ since } \frac{\partial sum_{p}^{l+1}}{\partial \sigma_{\mathbf{j}}^{l}} = w_{jp}^{l+1}$$

$$\bullet \ \frac{\partial \mathbf{E}}{\partial \sigma_{\mathbf{j}}^{\mathbf{L}}} = -\frac{\mathbf{y_{j}}}{\sigma_{\mathbf{j}}^{\mathbf{L}}} - \frac{1 - \mathbf{y_{j}}}{1 - \sigma_{\mathbf{j}}^{\mathbf{L}}}$$

Backpropagation in Action

Recall and Substitute

•
$$sum_j^l = \sum_{k=1}^{s_{i-1}} w_{kj}^l \sigma_k^{l-1}$$
 and $\sigma_i^l = \frac{1}{1 + e^{-sum_i^l}}$

$$\bullet \ \frac{\partial \mathbf{E}}{\partial \mathbf{w_{ij}^l}} = \frac{\partial \mathbf{E}}{\partial \sigma_{\mathbf{j}}^l} \frac{\partial \sigma_{\mathbf{j}}^l}{\partial \mathbf{sum_{j}^l}} \frac{\partial \mathbf{sum_{j}^l}}{\partial \mathbf{w_{ij}^l}} + \frac{\lambda}{2m} w_{ij}^l$$

$$\bullet \ \frac{\partial \sigma_{\mathbf{j}}^{l}}{\partial \mathbf{sum}_{\mathbf{i}}^{l}} = \sigma_{\mathbf{j}}^{l} (1 - \sigma_{\mathbf{j}}^{l})$$

$$\bullet \ \frac{\partial \mathbf{sum}_{\mathbf{j}}^{l}}{\partial \mathbf{w}_{\mathbf{i}\mathbf{i}}^{l}} = \sigma_{\mathbf{i}}^{l-1}$$

$$\bullet \ \frac{\partial \mathbf{E}}{\partial \sigma_{\mathbf{j}}^{\mathbf{l}}} = \sum_{p=1}^{s_{l+1}} \frac{\partial \mathbf{E}}{\partial \sigma_{\mathbf{j}}^{\mathbf{l}+1}} \frac{\partial \sigma_{\mathbf{j}}^{\mathbf{l}+1}}{\partial \mathbf{sum}_{\mathbf{p}}^{\mathbf{l}+1}} w_{jp}^{l+1}$$

$$\bullet \ \frac{\partial E}{\partial \sigma_i^L} = -\frac{y_j}{\sigma_i^L} - \frac{1 - y_j}{1 - \sigma_i^L}$$

Backpropagation in Action

The Backpropagation Algorithm for Training NN

- **1** Randomly initialize weights w_{ij}^l for $l=1,\ldots,L$, $i=1,\ldots,s_l$, $j=1,\ldots,s_{l+1}$.
- **②** Implement **forward propagation** to get $f_{\mathbf{w}}(\mathbf{x})$ for every $\mathbf{x} \in \mathcal{D}$.
- **3** Execute **backpropagation** on any misclassified $\mathbf{x} \in \mathcal{D}$ by performing gradient descent to minimize (non-convex) $E(\mathbf{w})$ as a function of parameters \mathbf{w} .
- For I = L 1 down to 2:

$$\mathbf{0} \quad \frac{\partial \mathbf{E}}{\partial \sigma_{\mathbf{j}}^{\mathbf{l}}} = \sum_{p=1}^{\mathsf{s}_{l+1}} \frac{\partial \mathbf{E}}{\partial \sigma_{\mathbf{j}}^{\mathbf{l}+1}} \sigma_{\mathbf{j}}^{\mathbf{l}+1} (1 - \sigma_{\mathbf{j}}^{\mathbf{l}+1}) w_{jp}^{l+1}$$

$$\mathbf{0} \quad \mathbf{w}_{ij}^{I} = \mathbf{w}_{ij}^{I} - \eta \frac{\partial \mathbf{E}}{\partial \mathbf{w}_{ij}^{I}}$$

o Keep picking misclassified examples until the cost function $E(\mathbf{w})$ shows significant reduction; else resort to some random perturbation of weights \mathbf{w} and restart a couple of times.

Challenges with Neural Network Training

What Changed with Neural Networks?

- Origin: Computational Model of Threshold Logic from Warren McCulloch and Walter Pitts (1943)
- Big Leap: For ImageNet Challenge, AlexNet acheived 85 % accuracy(NIPS 2012). Prev best was 75 % (CVPR 2011).
- Present best is 96.5 % MSRA (arXiv 2015). Comparable to human level accuracy.
- Challenges involved were varied background, same object with different colors(e.g. cats), varied sizes and postures of same objects, varied illuminated conditions.
- Tasks like OCR, Speech recognition are now possible without segmenting the word image/signal into character images/signals.

LeNet(1989 and 1998) v/s AlexNet(2012)

	LeeNet 1989	LeeNet 1998	AlexNet 2012
Task	Digit Recognition	Digit Recognition	Object Recognition
# Classes	10	10	1k
Image Size	16 X 16	28 X 28	256 X 256 X 3
# Examples	7k	60k	1.2 M
units	1256	8084	658 k
parameters	9760	60k	60 M
connections	65k	344k	652M
Summation	Sigmoid	Sigmoid	ReLU
GPU/ Non-GPU	Non-GPU based.	Non-GPU based.	GPU based.
Operations	11 billion	412 billions	200 quadrillions

Reasons for Big Leap

- Why LeeNet was not as successful as AlexNet, though the algorithm was same?
- Right algorithm at wrong time.
- Modern features
- Advancement in Machine learning.
- Realistic data collection in huge amount due to: regular competitions, evaluation metrics or challenging problem statements.
- Advances in Computational Resources: GPUs, industrial scale clusters.
- Evolution of tasks: Classification of 10 objects to 100 objects to "structure of classes".

Convolutional Neural Network

- Variation of multi layer feedforward neural network designed to use minimal preprocessing with wide application in image recognition and natural language processing
- Traditional multilayer perceptron(MLP) models do not take into account spatial structure of data and suffer from curse of dimensionality
- Convolution Neural network has smaller number of parameters due to local connections and weight sharing

