
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Lecture 22 contd: Convolutional And Recurrent Neural Networks
Instructor: Prof. Ganesh Ramakrishnan
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Recap: The Lego Blocks in Modern Deep Learning

1 Depth/Feature Map

2 Patches/Kernels (provide for spatial interpolations) - Filter

3 Strides (enable downsampling)

4 Padding (shrinking across layers)

5 Pooling

6 Embeddings

7 Memory cell and Backpropagation through time
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Convolution: Sparse Interactions through Kernels (for Single Feature Map)

x1

x2

x3

x4

x5

h1

h2

h3

h4

h5

wl
11

wl
12

wl
12

wl
21

wl
22

wl
23

wl
23

wl
32

wl
33

wl
34

wl
34

wl
43

wl
44

wl
45

wl
45

wl
54

wl
55

input/(l − 1)th layer lth layer hi =
∑

m

xmwmiK(i − m)

On LHS, K(i − m) = 1 iff |m − i| ≤ 1

For 2-D inputs (such as images):

hij =
∑

m

∑

n

xmnwij,mnK(i − m, j − n)

Intuition: Neighboring signals xm (or
pixels xmn) more relevant than one’s
further away, reduces prediction time

Can be viewed as multiplication with
a Toeplitza matrix K

Further, K is often sparse (eg:
K(i − m) = 1 iff |m − i| ≤ θ)

aEach row of the matrix is the row above shifted byOctober 15, 2016 3 / 28
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Convolution: Shared parameters and Patches (for Single Feature Map)

x2

x3

x4

x5

h2

h3

h4

h5

wl
1

wl
1

wl
−1

wl
0

wl
1

wl
1

wl
−1

wl
0

wl
1

wl
1

wl
−1

wl
0

wl
1

wl
1

wl
−1

wl
0

input/(l − 1)th layer lth layer
hi =

∑

m

xmwi−mK(i − m)

On LHS, K(i − m) = 1 iff |m − i| ≤ 1

For 2-D inputs (such as images):
hij =
∑

m

∑

n

xmnwi−m,j−nK(i − m, j − n)

Intuition: Neighboring signals xm (or
pixels xmn) affect in similar way
irrespective of location (i.e., value of
m or n)

More Intuition: Corresponds to
moving patches around the image

Further reduces storage requirement;
does not affect prediction timeOctober 15, 2016 4 / 28
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Convolution: Strides and Padding (for Single Feature Map)

x1

x2

x3

x4

x5

h1

h2

h3

h4

h5

wl
0

wl
1

wl
1

wl
−1

wl
0

wl
1

wl
1

wl
−1

wl
0

wl
1

wl
1

wl
−1

wl
0

wl
1

wl
1

wl
−1

wl
0

input/(l − 1)th layer lth layer

Consider only hi’s where i is a
multiple of s.

Intuition: Stride of s corresponds to
moving the patch by s steps at a time

More Intuition: Stride of s

corresponds to downsampling by s

What to do at the ends/corners: Ans:
Pad with either 0’s (same padding)
or let the next layer have fewer nodes
(valid padding)

Reduces storage requirement as well
as prediction time
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The Convolutional Filter
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The Convolutional Filter
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The Convolutional Filter
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The Convolutional Filter
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Image Example MLP Vs CNN

Input Image Size: 200 X 200 X 3
MLP: Hidden Layer has 40k neurons, so it has 4800000 parameters.
CNN: Hidden layer has 20 feature-maps each of size 5 X 5 X 3 with stride = 1, i.e. maximum
overlapping of convolution windows.
Question: How many parameters?
Answer: Just 1500
Question: How many neurons (location specific)?

Let M × N × 3 be dimension of image and P × Q × 3 be dimension of patch for kernel
convolution. Let s be stride length
Answer:
Output size =

(

M+P
s

− 1
)

×
(

N+Q
s

− 1
)

.

20× ((200 + 5)/stride)− 1)× ((200 + 5)/stride)− 1)
= 832320 (around 830 thousand which can increase with max-pooling).
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The Lego Blocks in Modern Deep Learning

1 Depth/Feature Map

2 Patches/Kernels (provide for spatial interpolations) - Filter

3 Strides (enable downsampling)

4 Padding (shrinking across layers)

5 Pooling (More downsampling) - Filter

6 RNN and LSTM (Backpropagation through time and Memory cell) (??)

7 Embeddings (After discussing unsupervised learning)

October 15, 2016 10 / 28
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The Max Pooling Filter
Max pooling is a (special purpose) downsampling filter/kernel that selects the
maximum value from its patch.

It is a sample-based discretization process.
Objective is dimensionality reduction through down-sampling of input
representation (eg: image),
Allows for translation invariance to the internal representation.
Helps avoid overfitting and reduces the number of parameters to learn.
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Max pooling (with downsampling) for a Single Feature Map

1-d example
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Max pooling (with downsampling) for a Single Feature Map

1-d example
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Max pooling (with downsampling) for a Single Feature Map

1-d example
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Max pooling (with downsampling) for a Single Feature Map

1-d example

What will be the output if input and max pooling filter remains same but stride changes to 2?
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Max pooling (with downsampling) for a Single Feature Map

1-d example

What will be the output if input and max pooling filter remains same but stride changes to 2?
[6,8]
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Max pooling in 2-D for a Single Feature Map

Let M × N × 3 be dimension of image and P × Q × 3 be dimension of patch for kernel
convolution. Let s be stride length

Max pooling takes every M × N × 3 patch from the input and set the output to the
maximum value in that patch

Output size =

October 15, 2016 13 / 28
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Max pooling in 2-D for a Single Feature Map

Let M × N × 3 be dimension of image and P × Q × 3 be dimension of patch for kernel
convolution. Let s be stride length

Max pooling takes every M × N × 3 patch from the input and set the output to the
maximum value in that patch

Output size =
(

M−P
s

+ 1
)

×
(

N−Q
s

+ 1
)

. For Eg:

▶ Input: A 3D image of size with M = N = 5, P = Q = 3 and with (default) stride of 1.
▶ Output size will be 3× 3× 1

October 15, 2016 13 / 28
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Tutorial 8, Problem 5

ConvNetJS (http://cs.stanford.edu/people/karpathy/convnetjs/) is a Javascript
library for training Deep Learning models (Neural Networks) entirely in your browser. Try
different choices of network configurations which include the choice of the stack of
convolution, pooling, activation units, number of parallel networks, position of fully connected
layers and so on. You can also save some network snapshots as JSON objects. What does the
network visualization of the different layers reveal?
Also try out the demo at http://places.csail.mit.edu/demo.html to understand the
heat maps and their correlations with the structure of the neural network.
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Tutorial 8, Problem 6

Discuss the advantages and disadvantages of different activation functions: tanh, sigmoid,
ReLU, softmax. Explain and illustrate when you would choose one activation function in lieu
of another in a Neural Network. You can also include any experiences from Problem 5 in your
answer.
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Alex-net [NIPS 2012]
Stack of two types of parallel networks

First 5 convolution layers
▶ First convolution layer takes input of size 224× 224× 3, 48 (×2) features each with
filter/kernel of size 11× 11× 3 with stride of 4

⋆ Thus, ((224 + 11)/4− 1)× ((224 + 11)/4− 1) = 57× 57.

▶ Max-pooling (3× 3× 1 with stride of 1) in the end reduces size to 55× 55 for each filter

Fully connected last 3 layers

Image reference: ”Imagenet Classification with Deep Convolution Neural Networks”,NIPS 2012.
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Recap: Linear Conditional Random Fields (CRF)
Just as CRF was an extension of Logistic Regression (LR) can Neural Networks
(cascade of LRs) be extended to sequential output?

xn

xi

x2

x1

yn

yi

y2

y1

φn,x

φi,x

φ2,x

φ1,x

inputs classes & y−potentials φi,yx−potentials
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Recurrent Neural Network (RNN) Intuition
Recall: In CNN we used the trick of common parameters for many neurons
RNN intuition 1: We want a neuron’s output at time t to depend on its state s at time
t − 1
RNN intuition 2: Share parameters across time steps
Recurrent ⇒ Performing the same task for every element of sequence.
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Recurrent Neural Network (RNN) Intuition
Recall: In CNN we used the trick of common parameters for many neurons
RNN intuition 1: We want a neuron’s output at time t to depend on its state s at time
t − 1
RNN intuition 2: Share parameters across time steps
Recurrent ⇒ Performing the same task for every element of sequence.
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Tutorial 8: Problem 7

Try the text generation RNN (Recurrent Neural Network) demo at
http://www.cs.toronto.edu/~ilya/rnn.html. State any interesting observations. How
would you improve the performance of the RNN?
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RNN: Compact representation
Generalization of Neural networks to Sequential tasks such as language modeling, word

prediction, etc..
Perform the same task for every element of the sequence, with the output being
dependent on the previous computation
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RNN: One Hot Encoding for Language Model

With 3 characters in vocabulary, a,b and c, what would be the best encoding to inform
each character occurrence to the network?

One Hot Encoding: Give a unique key k to each character in alpha-numeric order, and
encode each character with a vector of vocabulary size, with a 1 for the kth element, and
0 for all other elements.
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RNN: One Hot Encoding for Language Model

With 3 characters in vocabulary, a,b and c, what would be the best encoding to inform
each character occurrence to the network?

One Hot Encoding: Give a unique key k to each character in alpha-numeric order, and
encode each character with a vector of vocabulary size, with a 1 for the kth element, and
0 for all other elements.
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RNN: Language Model Example with one hidden layer of 3 neurons
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RNN: Language Model Example with one hidden layer of 3 neurons

Figure: Unfolded RNN for 4 time units
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RNN: Equations

ht = g(Whhht−1 + Whxxt + bh)
▶ Activation function g could be sigmoid σ or its extension to multiclass called softmax1, tanh

(

1−e−2x

1+e−2x

)

which is simply a scaled2 and shifted version of the sigmoid function

▶ A network may have combination of different activation functions3

yt = Wyh ht

The new (present) hidden state depends upon the previous hidden state(s) and the
present input.

The present output depends upon present hidden state (and in turn upon previous hidden
states).

1Tutorial 7
2
tanh(x) = 2σ(2x)− 1
3http://www.wildml.com/2015/10/

recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
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Back Propagation Through Time: BPTT Illustration

h1 = g(Whhh0 + Whxx0 + bh), initialize h0 and x0 as zero vectors.
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Back Propagation Through Time: BPTT Illustration

h1 = g(Whhh0 + Whxx0 + bh), initialize h0 and x0 as zero vectors.

At t = 2 we present x2 as ‘a’ at input and desire y2 as ‘c’ at output in one hot encoded
form as shown previously

h2 = g(Whhh1 + Whxx1 + bh)
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Back Propagation Through Time: BPTT Illustration

h1 = g(Whhh0 + Whxx0 + bh), initialize h0 and x0 as zero vectors.

At t = 2 we present x2 as ‘a’ at input and desire y2 as ‘c’ at output in one hot encoded
form as shown previously

h2 = g(Whhh1 + Whxx1 + bh)

At t = 3, x3 = ‘c’, y3 we desire is ‘h’.

y3 = Wyh σ(Whhh2 + Whxx2 + bh)
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Back Propagation Through Time: BPTT Illustration

h1 = g(Whhh0 + Whxx0 + bh), initialize h0 and x0 as zero vectors.

At t = 2 we present x2 as ‘a’ at input and desire y2 as ‘c’ at output in one hot encoded
form as shown previously

h2 = g(Whhh1 + Whxx1 + bh)

At t = 3, x3 = ‘c’, y3 we desire is ‘h’.

y3 = Wyh σ(Whhh2 + Whxx2 + bh)

Put h1 and h2 in the last equation and then tune weights (through back propagation) to
get the appropriate y3 first corresponding to vectors x3, x2 and x1.

Similarly use h1 in equation for y2 and tune weights to get the appropriate y2
corresponding to vectors x2 and x1.

Then tune for y1.
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RNN Parameters

In previous example, we used the sequence length of 4, i.e. no. of time steps to unroll the
RNN.

We used the batch size of 1, i.e. the number of input vectors presented at single time
step to the RNN.

One hot encoding is the best suited encoding for such tasks while training the neural
networks.

We can vary these parameters according to the task at hand.
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RNN Limitations

We want to train our networks with long term dependencies.

In RNN, the influence of the given input decays exponentially as it cycles around the
network recurrent connections. The limitation of learning small context of RNN is called
”vanishing gradient”.

Gradient vanishes especially when we use sigmoid function and several gradient values v

with |v| < 1, get multiplied during BPTT to give a zero.

Instead, if we used an alternative function that gives value > 1 as output, we will face the
problem of ‘exploding gradient’.

October 15, 2016 26 / 28



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Vanishing Gradient Problem

The sensitivity(derivative) of network w.r.t input(@t = 1) decays exponentially with time, as
shown in the unfolded (for 7 time steps) RNN below. Darker the shade, higher is the
sensitivity w.r.t to x1.

Image reference: Alex Graves 2012.
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Long Short-Term Memory (LSTM) Intuition

Learn when to propagate gradients and when not, depending upon the sequences.

Use the memory cells to store information and reveal it whenever needed.

I live in India.... I visit Mumbai regularly.

For example: Remember the context ”India”, as it is generally related to many other
things like language, region etc. and forget it when the words like ”Hindi”, ”Mumbai” or
End of Line/Paragraph appear or get predicted.
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