
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Lecture 23: Recurrent Neural Networks, Long Short Term Memory
Networks, Conntectionist Temporal Classification, Decision Trees

Instructor: Prof. Ganesh Ramakrishnan

October 17, 2016 1 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Recap: The Lego Blocks in Modern Deep Learning

1 Depth/Feature Map
2 Patches/Kernels (provide for spatial interpolations) - Filter
3 Strides (enable downsampling)
4 Padding (shrinking across layers)
5 Pooling (More downsampling) - Filter
6 RNN and LSTM (Backpropagation through time and Memory cell)
7 Connectionist Temporal Classification
8 Embeddings (Later, with unsupervised learning)

October 17, 2016 2 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Recap: Linear Conditional Random Fields (CRF)
Just as CRF was an extension of Logistic Regression (LR) can Neural Networks
(cascade of LRs) be extended to sequential output?

xn

xi

x2

x1

yn

yi

y2

y1

ϕn,x

ϕi,x

ϕ2,x

ϕ1,x

inputs classes & y−potentials ϕi,yx−potentials

October 17, 2016 3 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Recurrent Neural Network (RNN) Intuition
Recall: In CNN we used the trick of common parameters for many neurons
RNN intuition 1: We want a neuron’s output at time t to depend on its state s at time
t − 1
RNN intuition 2: Share parameters across time steps
Recurrent ⇒ Performing the same task for every element of sequence.

October 17, 2016 4 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Recurrent Neural Network (RNN) Intuition
Recall: In CNN we used the trick of common parameters for many neurons
RNN intuition 1: We want a neuron’s output at time t to depend on its state s at time
t − 1
RNN intuition 2: Share parameters across time steps
Recurrent ⇒ Performing the same task for every element of sequence.

October 17, 2016 4 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Exercise on RNN

Try the text generation RNN (Recurrent Neural Network) demo at
http://www.cs.toronto.edu/~ilya/rnn.html. State any interesting observations. How
would you improve the performance of the RNN?

October 17, 2016 5 / 40

http://www.cs.toronto.edu/~ilya/rnn.html

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

RNN: Compact representation
Generalization of Neural networks to Sequential tasks such as language modeling, word
prediction, etc..
Perform the same task for every element of the sequence, with the output being
dependent on the previous computation

October 17, 2016 6 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

RNN: One Hot Encoding for Language Model

With 3 characters in vocabulary, a,b and c, what would be the best encoding to inform
each character occurrence to the network?
One Hot Encoding: Give a unique key k to each character in alpha-numeric order, and
encode each character with a vector of vocabulary size, with a 1 for the kth element, and
0 for all other elements.

October 17, 2016 7 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

RNN: One Hot Encoding for Language Model

With 3 characters in vocabulary, a,b and c, what would be the best encoding to inform
each character occurrence to the network?
One Hot Encoding: Give a unique key k to each character in alpha-numeric order, and
encode each character with a vector of vocabulary size, with a 1 for the kth element, and
0 for all other elements.

October 17, 2016 7 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

RNN: Language Model Example with one hidden layer of 3 neurons

Figure: Unfolded RNN for 4 time units

October 17, 2016 8 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

RNN: Language Model Example with one hidden layer of 3 neurons

Figure: Unfolded RNN for 4 time units

October 17, 2016 8 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

RNN: Equations

ht = g(Whhht−1 + Whxxt + bh)
▶ Activation function g could be sigmoid σ or its extension to multiclass called softmax1, tanh(

1−e−2x

1+e−2x

)
which is simply a scaled2 and shifted version of the sigmoid function

▶ A network may have combination of different activation functions3

yt = Wyh ht

The new (present) hidden state depends upon the previous hidden state(s) and the
present input.
The present output depends upon present hidden state (and in turn upon previous hidden
states).

1Tutorial 7
2tanh(x) = 2σ(2x)− 1
3http://www.wildml.com/2015/10/

recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
October 17, 2016 9 / 40

http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Back Propagation Through Time: BPTT Illustration

h1 = g(Whhh0 + Whxx0 + bh), initialize h0 and x0 as zero vectors.

At t = 2 we present x2 as ‘a’ at input and desire y2 as ‘c’ at output in one hot encoded
form as shown previously
h2 = g(Whhh1 + Whxx1 + bh)

At t = 3, x3 = ‘c’, y3 we desire is ‘h’.
y3 = Wyh σ(Whhh2 + Whxx2 + bh)

Put h1 and h2 in the last equation and then tune weights (through back propagation) to
get the appropriate y3 first corresponding to vectors x3, x2 and x1.
Similarly use h1 in equation for y2 and tune weights to get the appropriate y2
corresponding to vectors x2 and x1.
Then tune for y1.

October 17, 2016 10 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Back Propagation Through Time: BPTT Illustration

h1 = g(Whhh0 + Whxx0 + bh), initialize h0 and x0 as zero vectors.
At t = 2 we present x2 as ‘a’ at input and desire y2 as ‘c’ at output in one hot encoded
form as shown previously
h2 = g(Whhh1 + Whxx1 + bh)

At t = 3, x3 = ‘c’, y3 we desire is ‘h’.
y3 = Wyh σ(Whhh2 + Whxx2 + bh)

Put h1 and h2 in the last equation and then tune weights (through back propagation) to
get the appropriate y3 first corresponding to vectors x3, x2 and x1.
Similarly use h1 in equation for y2 and tune weights to get the appropriate y2
corresponding to vectors x2 and x1.
Then tune for y1.

October 17, 2016 10 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Back Propagation Through Time: BPTT Illustration

h1 = g(Whhh0 + Whxx0 + bh), initialize h0 and x0 as zero vectors.
At t = 2 we present x2 as ‘a’ at input and desire y2 as ‘c’ at output in one hot encoded
form as shown previously
h2 = g(Whhh1 + Whxx1 + bh)

At t = 3, x3 = ‘c’, y3 we desire is ‘h’.
y3 = Wyh σ(Whhh2 + Whxx2 + bh)

Put h1 and h2 in the last equation and then tune weights (through back propagation) to
get the appropriate y3 first corresponding to vectors x3, x2 and x1.
Similarly use h1 in equation for y2 and tune weights to get the appropriate y2
corresponding to vectors x2 and x1.
Then tune for y1.

October 17, 2016 10 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Back Propagation Through Time: BPTT Illustration

h1 = g(Whhh0 + Whxx0 + bh), initialize h0 and x0 as zero vectors.
At t = 2 we present x2 as ‘a’ at input and desire y2 as ‘c’ at output in one hot encoded
form as shown previously
h2 = g(Whhh1 + Whxx1 + bh)

At t = 3, x3 = ‘c’, y3 we desire is ‘h’.
y3 = Wyh σ(Whhh2 + Whxx2 + bh)

Put h1 and h2 in the last equation and then tune weights (through back propagation) to
get the appropriate y3 first corresponding to vectors x3, x2 and x1.
Similarly use h1 in equation for y2 and tune weights to get the appropriate y2
corresponding to vectors x2 and x1.
Then tune for y1.

October 17, 2016 10 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

RNN Parameters

In previous example, we used the sequence length of 4, i.e. no. of time steps to unroll the
RNN.
We used the batch size of 1, i.e. the number of input vectors presented at single time
step to the RNN.
One hot encoding is the best suited encoding for such tasks while training the neural
networks.
We can vary these parameters according to the task at hand.

October 17, 2016 11 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

RNN Limitations

We want to train our networks with long term dependencies.
In RNN, the influence of the given input decays exponentially as it cycles around the
network recurrent connections. The limitation of learning small context of RNN is called
”vanishing gradient”.
Gradient vanishes especially when we use sigmoid function and several gradient values v
with |v| < 1, get multiplied during BPTT to give a zero.
Instead, if we used an alternative function that gives value > 1 as output, we will face the
problem of ‘exploding gradient’.

October 17, 2016 12 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Vanishing Gradient Problem

The sensitivity(derivative) of network w.r.t input(@t = 1) decays exponentially with time, as
shown in the unfolded (for 7 time steps) RNN below. Darker the shade, higher is the
sensitivity w.r.t to x1.

Image reference: Alex Graves 2012.

October 17, 2016 13 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Long Short-Term Memory (LSTM) Intuition

Learn when to propagate gradients and when not, depending upon the sequences.
Use the memory cells to store information and reveal it whenever needed.
I live in India.... I visit Mumbai regularly.
For example: Remember the context ”India”, as it is generally related to many other
things like language, region etc. and forget it when the words like ”Hindi”, ”Mumbai” or
End of Line/Paragraph appear or get predicted.

October 17, 2016 14 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Demonstration of Alex Graves’s system working on pen coordinates

1 Top: Characters as recognized, without output delayed but never revised.
2 Second: States in a subset of the memory cells, that get reset when character recognized.
3 Third: Actual writing (input is x and y coordinates of pen-tip and up/down location).
4 Fourth: Gradient backpropagated all the way to the xy locations. Notice which bits of the

input are affecting the probability that it’s that character (how decisions depend on past).
October 17, 2016 15 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

LSTM Equations
ft = σ(Wxfxt + Whfht−1 + Wcfct−1 + bf)
it = σ(Wxixt + Whiht−1 + Wcict−1 + bi)
We learn the forgetting (ft) of previous cell state and insertion (it) of present input
depending on the present input, previous cell state(s) and hidden state(s).

Image reference: Alex Graves 2012.
October 17, 2016 16 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

LSTM Equations
ct = ftct−1 + ittanh(Whcht−1 + Wxcxt + bc)

The new cell state ct is decided according to the firing of ft and it.

Image reference: Alex Graves 2012.
October 17, 2016 17 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

LSTM Equations

ct = ftct−1 + ittanh(Whcht−1 + Wxcxt + bc)

ft = σ(Wxfxt + Whfht−1 + Wcfct−1 + bf)

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi)

Each gate is a vector of cells; keep the constraint of Wc∗ being diagonal so that each
element of LSTM unit acts independently.
ot = σ(Wxoxt + Whoht−1 + Wcoct−1 + bf)

ht = ot tanh(ct)

October 17, 2016 18 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

LSTM Gradient Information remain preserved

The opening ’O’ or closing ’-’ of input, forget and output gates are shown below, to the left
and above the hidden layer respectively.

Image reference: Alex Graves 2012.

October 17, 2016 19 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

LSTM V/S RNN results on Novel writing
A RNN and a LSTM, when trained appropriately with a Shakespeare Novel write the following
output (for few time steps) upon random initialization.

October 17, 2016 20 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Sequence Labeling

The task of labeling the sequence with discrete labels. Examples: Speech recognition,
handwriting recognition, part of speech tagging.
Humans while reading/hearing make use of context much more than individual
components. For example:- Yoa can undenstard dis, tough itz an eroneous text.
The sound or image of individual characters may appear similar and may cause confusion
to the network, if the proper context is unknown. For example: ”in” and ”m” may look
similar whereas ”dis” and ”this” may sound similar.

October 17, 2016 21 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Type of Sequence Labeling Tasks

Sequence Classification: Label sequence is constrained to be of unit length.

October 17, 2016 22 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Type of Sequence Labeling Tasks

Segment Classification: Target sequence consist of multiple labels and the segment
locations of the input is known in advance, e.g. the timing where each character ends and
another character starts is known in a speech signal.

- We generally do not have such data available, and segmenting such data is both tiresome
and erroneous.

October 17, 2016 23 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Type of Sequence Labeling Tasks

Temporal Classification: Tasks in which temporal location of each label in the input
image/signal does not matter.

- Very useful, as generally we have higher level labeling available for training, e.g. word images
and the corresponding strings, or it is much easier to automate the process of segmenting the
word images from a line, than to segment the character images from a word.

October 17, 2016 24 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Connectionist Temporal Classification (CTC) Layer

For temporal classification task: length of label sequence < length of input sequence.
CTC label predictions at any time in input sequence.
Predict an output at every time instance, and then decode the output using probabilities
we get at output layer in vector form.
e.g. If we get output as sequence ”–m–aa-ccch-i-nee– -lle–a-rr-n-iinnn-g”, we will decode
it to ”machine learning”.
While training we may encode ”machine learning” to”-m-a-c-h-i-n-e- -l-e-a-r-n-i-n-g-” via
C.T.C. Layer.

October 17, 2016 25 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

CTC Intuition [Optional]

October 17, 2016 26 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

CTC Intuition [Optional]

NN function : f(xT) = yT

xT: input image/signal x of length T.
- For image: each element of xT is a column(or its feature) of the image.
yT: output sequence y of length T.
- each element of yT is a vector of length |A’|(where A’ = A∪”-” i.e. alphabet set ∪
blank label).

ℓU : Label of length U(<T).
Intuition behind CTC:

generate a PDF at every time-step t ∈ 1,2,...,T.
Train NN with objective function that forces Max. Likelihood to decode xT to ℓU(desired
label).

October 17, 2016 27 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

CTC Layer: PDF [Optional]

P(π|x) =
∏T

t=1 yt(πt)
path π : a possible string sequence of length T, that we expect to lead to ℓ. For example:
“-p-a-t-h-”, if ℓ = ”path”.
yi(n): probability assigned by NN when character n(∈ A’) is seen at time i. ”-” is symbol
for blank label.
πt : tth element of path π.

P(ℓ|x)=
∑

label(π)=ℓ P(π|x)

October 17, 2016 28 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

CTC Layer: PDF [Optional]

P(ℓ|x)=
∑

label(π)=ℓ P(π|x) =
∑

label(π)=ℓ

∏T
t=1 yt(πt)

Question: What could be possible paths of length T = 9 that lead to ℓ = ”path”?
Answer:
Question: How do we take care of cases like ℓ = ”Mongoose”?
Answer:

October 17, 2016 29 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

CTC Layer: PDF [Optional]

P(ℓ|x)=
∑

label(π)=ℓ P(π|x) =
∑

label(π)=ℓ

∏T
t=1 yt(πt)

Question: What could be possible paths of length T = 9 that lead to ℓ = ”path”?
Answer: “-p-a-t-h-”, “pp-a-t-h-”, “-paa-t-h-”, “-ppa-t-h-”, “-p-aat-h-” etc.
Question: How do we take care of cases like ℓ = ”Mongoose”?
Answer: We change ℓ = ”Mongoose” to ℓ = ”Mongo-ose”.
Question: During training ℓ is known, what to do at testing stage?
Answer: Next Slide.

October 17, 2016 30 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

CTC Layer: Forward Pass Decoding [Optional]

P(ℓ|x)=
∑

label(π)=ℓ P(π|x) =
∑

label(π)=ℓ

∏T
t=1 yt(πt)

Question: During training ℓ is known, what to do at testing stage?
1 Brute force: try all possible ℓ’s, all possible π’s for each ℓ to get P(ℓ|x) and choose best ℓ.

- Rejected as expensive.
2 Best Path Decoding - most likely path corresponds to the most likely label.

▶ P(A1) = 0.1, where A1 is the only path corresponding to label A.
▶ P(B1) = P(B2) = … = P(B10) = 0.05 , where B1..B10 are the 10 paths corresponding to

label B.
▶ Clearly B is preferable over A as P(B|x) = 0.5.
▶ But Best Path Decoding will select A.

- Rejected as inaccurate.
3 Prefix Search Decoding - NEXT

October 17, 2016 31 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

CTC Layer: Prefix Search Decoding [Optional]

1 Initialize prefix p* = ϕ; //p* is prefix of /ell
2 P(ϕ) = 1; // as ϕ is prefix of every word.
3 try pnew = p* + k, for all k ∈ A∪{eos}; // + represent concatenation.
4 Maintain Lp: list of growing prefixes; // |A| + 1 new values per iteration.
5 Maintain Pp: list of probabilities of corresponding elements in Lp; //How to find P(p*+

k)? Next Slide.
6 if P(p*+eos) >= max(Pp): stop and go to step 8;
7 else: update p* with prefix having max prob. and repeat from step 3;
8 p* is the required prefix.

In practice beam-search is used to limit the exponentially growing Lp and make the decoding
faster.

October 17, 2016 32 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

CTC Layer: Prefix Search Decoding
Consider the DAG shown below with A = {x,y} and e representing the end of string. The
steps a-f represent the path followed by Prefix Search Decoding Algorithm.

What ℓ would the Best Path Decoding Produce?
What ℓ would the Prefix Search Decoding Produce?

October 17, 2016 33 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

CTC Layer: Extending Prefix Probabilities [Optional]

P(p|x)= Yt(pn) + Yt(pb)
Yt(p): probability that prefix p(of ℓ) is seen at time t.
Yt(pn): prob. that p seen at t and last seen output is non-blank.
Yt(pb): prob. that p seen at t and last seen output is blank.

Initial Conditions :
Yt(ϕn) = 0.
Yt(ϕb) =

∏t
i=1 yi(b).

Extended Probabilities: Consider, initial p=ϕ, ℓ∗ : growing output labeling, p* : current prefix,
and p’ = p* + k; k � A∪{eos}.

Y1(p′b) = 0(as k ∈ A∪{eos}, and A excludes blank)
Y1(p′n) = y1(k) (as p’ ends with k)

October 17, 2016 34 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

CTC Layer: Extending Prefix Probabilities [Optional]

Pnew(t) : Prob. to see a new character k at time t.

Pnew(t) =
Yt−1(p∗b), if p* ends with k.
Yt−1(p∗b) + Yt−1(p∗n), otherwise.
Thus:

Yt(p′n) = yt(k)((Pnew(t)+Yt−1(p’n)))
Yt(p′b) = yt(b)(yt−1(p’b)+yt−1(p’n)))

October 17, 2016 35 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Other (Non-linear) Classifiers: Decision Trees and Support Vector
Classification

October 17, 2016 36 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Decision Trees: Cascade of step functions on individual features

Outlook

Wind

Humidity

Yes

No

Yes

No

Yes

rain

sunny

overcast

high

normal

strong

weak

October 17, 2016 37 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Use cases for Decision Tree Learning

October 17, 2016 38 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Canonical Playtennis Dataset
Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

October 17, 2016 39 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Decision tree representation

Each internal node tests an attribute
Each branch corresponds to attribute value
Each leaf node assigns a classification

How would we represent:
∧,∨, XOR
(A ∧ B) ∨ (C ∧ ¬D ∧ E)
M of N

October 17, 2016 40 / 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

‘’

October 17, 2016 40 / 40

