Lecture 24: Other (Non-linear) Classifiers: Decision Tree Learning, Boosting, and Support Vector Classification Instructor: Prof. Ganesh Ramakrishnan

900

1 / 46

October 20, 2016

ን ዓር የ 2 / 46

Decision Trees: Cascade of step functions on individual features

The Canonical Playtennis Dataset

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

ж

900

• • • • • • • • • • • •

Decision tree representation

- Each internal node tests an attribute
- Each branch corresponds to attribute value
- Each leaf node assigns a classification

How would we represent:

- $\land, \lor, \mathsf{XOR}$
- $(A \land B) \lor (C \land \neg D \land E)$
- M of N

Top-Down Induction of Decision Trees (Greedy algo) Main loop:

- $\phi_i \leftarrow$ the "best" decision attribute for next node
- 2 Assign ϕ_i as decision attribute for *node*
- **③** For each value of ϕ_i , create new descendant of *node*
- Sort training examples to leaf nodes
- If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

Which attribute is best?
Eg:
$$\phi_i = Outlook$$
 in first iteration Soullisk: Sunny (Svý)
 $V_i = \{Sunny, Humid, 3\}$
Outlook humid Soutlook shumid
S (if all humid days
were bad for terms)

Top-Down Induction of Decision Trees

Main loop:

- **(**) $\phi_i \leftarrow$ the "best" decision attribute for next *node*
- 2 Assign ϕ_i as decision attribute for *node*
- **③** For each value of ϕ_i , create new descendant of *node*
- Sort training examples to leaf nodes
- If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes Which attribute is best?

Answer: That which brings about maximum reduction in impurity $\operatorname{Imp}(S_v)$ of the data subset $S_v \subseteq \mathcal{D}$ induced by $\phi_i = v$.

Measures of impurity 1) Ratio of incorrectly classified (for each class) normalized by see of split Entropy: - Z P(Ci) log P(Ci) (Impure) Pp. (Ci) = Prob of Ci as Vicw based on splits of S base on \$\$j

Top-Down Induction of Decision Trees

Main loop:

- **9** $\phi_i \leftarrow$ the "best" decision attribute for next *node*
- 2 Assign ϕ_i as decision attribute for *node*
- **③** For each value of ϕ_i , create new descendant of *node*
- Sort training examples to leaf nodes
- If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes Which attribute is best?

Answer: That which brings about maximum reduction in impurity $Imp(S_v)$ of the data subset $S_v \subseteq D$ induced by $\phi_i = v$.

- S is a sample of training examples, p_{C_i} is proportion of examples belonging to class C_i in S
- Entropy measures impurity of S: $H(S) \equiv \sum_{i=1}^{N} -p_{C_i} \log_2 p_{C_i}$

• $Gain(S, \phi_i) = \text{expected reduction in entropy due to splitting/sorting on } \phi_i$ $Gain(S, \phi_i) \equiv H(S) - \sum_{v \in Values(\phi_i)} \frac{|S_v|}{|S|} H(S_v)$ $S_v \rightarrow Scales entropy$ horsed on impact Common Impurity Measures (Tutorial 9) before split using ϕ_i

$$\phi_{s} = \arg \max_{V(\phi_{i}),\phi_{i}} \left(Imp(S) - \sum_{v_{ij} \in V(\phi_{i})} \frac{|S_{v_{ij}}|}{|S|} Imp(S_{v_{ij}}) \right)$$

where $S_{ij} \subseteq D$ is a subset of dataset such that each instance x has attribute value $\phi_i(x) = v_{ij}$.

Name	Imp(S)		
Entropy	$-\sum_{i=1}^{K} \Pr(C_i) \bullet \log(\Pr(C_i))$		
Gini Index	$\sum_{i=1}^{K} \Pr(C_i)(1 - \Pr(C_i))$		
Class (Min Prob) Error	$\underset{i}{\operatorname{argmin}}(1 - \operatorname{Pr}(C_i))$		

Table: Decision Tree: Impurity measurues

These measure the extent of spread /confusion of the probabilities over the classes

Figure: Plot of Entropy, Gini Index and Misclassification Accuracy. Source: https://inspirehep.net/record/1225852/files/TPZ_Figures_impurity.png

Regularization in Decision Tree Learning - Get simple model
 Premise: Split data into train and validation set¹
 Get simple model
 (penalize complex model)
 For generalizabling

 ¹Note: The test set still remains separate
 ²Like we discussed in the case of Convolutional Neural Networks
 ³Prefer the shortest hypothesis that fits the data

Regularization in Decision Tree Learning

- Premise: Split data into *train* and *validation* set¹
- Structural Regularization² based on Occam's razor³
 - stop growing when data split not statistically significant
 - Use parametric/non-parametric hypothesis tests

200

Few data pts with almost

unform

¹*Note:* The *test set* still remains separate ²Like we discussed in the case of Convolutional Neural Networks ³Prefer the shortest hypothesis that fits the data

Regularization in Decision Tree Learning

- Premise: Split data into train and validation set¹
- Structural Regularization² based on Occam's razor³
 - stop growing when data split not statistically significant
 - $\star~$ Use parametric/non-parametric hypothesis tests
 - grow full tree, then post-prune tree
 - * Minimum Description Length (MDL): minimize size(tree) + size(misclassifications_{val}(tree))
 - * Achieved as follows: Do until further pruning is harmful
 - (1) Evaluate impact on *validation* set of pruning each possible node (plus those below it)
 - (2) Greedily remove the one that most improves validation set accuracy

²Like we discussed in the case of Convolutional Neural Networks

³Prefer the shortest hypothesis that fits the data

¹*Note:* The *test set* still remains separate

Regularization in Decision Tree Learning

- Premise: Split data into train and validation set¹
- Structural Regularization² based on Occam's razor³
 - stop growing when data split not statistically significant
 - ★ Use parametric/non-parametric hypothesis tests
 - 2 grow full tree, then post-prune tree
 - * Minimum Description Length (MDL): minimize size(tree) + size(misclassifications_{val}(tree))
 - * Achieved as follows: Do until further pruning is harmful
 - (1) Evaluate impact on *validation* set of pruning each possible node (plus those below it)
 - (2) Greedily remove the one that most improves validation set accuracy
 - Source tree into a set of rules and post-prune each rule independently (C4.5 Decision Tree Learner)

¹*Note:* The *test set* still remains separate ²Like we discussed in the case of Convolutional Neural Networks ³Prefer the shortest hypothesis that fits the data

200

then play

General Minimum Description Length

• Data is D and theory about the data is T.

29. 2-500

- 5 Eg: unprined decision tree T. (or particulty prined) T. • MDL principle: Define I(D|T) and I(T) and choose T such that it minimizes ~ I(D|T) + I(T). _ Size of free
- Also aligned with the Occam Razor principle.
- Bayes Estimation: $I(D|T) = \log P(D|T)$ and $I(T) = \log P(T)$