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Lecture 24: Other (Non-linear) Classifiers: Decision Tree Learning,
Boosting, and Support Vector Classification

Instructor: Prof. Ganesh Ramakrishnan
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Decision Trees: Cascade of step functions on individual features

Outlook

Wind

Humidity

Yes

No

Yes

No

Yes

rain

sunny

overcast

high

normal

strong

weak
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The Canonical Playtennis Dataset

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

October 20, 2016 4 / 46



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Decision tree representation

Each internal node tests an attribute

Each branch corresponds to attribute value

Each leaf node assigns a classification

How would we represent:

∧,∨, XOR

(A ∧ B) ∨ (C ∧ ¬D ∧ E)

M of N

October 20, 2016 5 / 46
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Top-Down Induction of Decision Trees
Main loop:

1 ϕi ← the “best” decision attribute for next node
2 Assign ϕi as decision attribute for node
3 For each value of ϕi, create new descendant of node
4 Sort training examples to leaf nodes
5 If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

Which attribute is best?

October 20, 2016 6 / 46
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Top-Down Induction of Decision Trees
Main loop:

1 ϕi ← the “best” decision attribute for next node
2 Assign ϕi as decision attribute for node
3 For each value of ϕi, create new descendant of node
4 Sort training examples to leaf nodes
5 If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

Which attribute is best?
Answer: That which brings about maximum reduction in impurity Imp(Sv) of the data subset
Sv ⊆ D induced by ϕi = v.
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Top-Down Induction of Decision Trees
Main loop:

1 ϕi ← the “best” decision attribute for next node
2 Assign ϕi as decision attribute for node
3 For each value of ϕi, create new descendant of node
4 Sort training examples to leaf nodes
5 If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

Which attribute is best?
Answer: That which brings about maximum reduction in impurity Imp(Sv) of the data subset
Sv ⊆ D induced by ϕi = v.

S is a sample of training examples, pCi
is proportion of examples belonging to class Ci in S

Entropy measures impurity of S: H(S) ≡

K
∑

i=1

−pCi
log2 pCi

Gain(S, ϕi) = expected reduction in entropy due to splitting/sorting on ϕi

Gain(S, ϕi) ≡ H(S) −
∑

v∈Values(ϕi)
|Sv|
|S| H(Sv)
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Common Impurity Measures (Tutorial 9)

ϕs = arg max
V(ϕi),ϕi

(

Imp(S)−
∑

vij∈V(ϕi)

|Svij
|

|S|
Imp(Svij

)
)

where Sij ⊆ D is a subset of dataset such that each instance x has attribute value ϕi(x) = vij.

Name Imp(S)

Entropy −
K
∑

i=1

Pr(Ci) • log(Pr(Ci))

Gini Index

K
∑

i=1

Pr(Ci)(1− Pr(Ci))

Class (Min Prob) Error argmin
i
(1− Pr(Ci))

Table: Decision Tree: Impurity measurues

These measure the extent of spread /confusion of the probabilities over the classes
October 20, 2016 7 / 46
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Alternative impurity measures (Tutorial 9)

Figure: Plot of Entropy, Gini Index and Misclassification Accuracy. Source:
https://inspirehep.net/record/1225852/files/TPZ_Figures_impurity.png

These measure the extent of spread/confusion of the probabilities over the classesOctober 20, 2016 8 / 46
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Regularization in Decision Tree Learning

Premise: Split data into train and validation set1

1Note: The test set still remains separate
2Like we discussed in the case of Convolutional Neural Networks
3Prefer the shortest hypothesis that fits the data
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Regularization in Decision Tree Learning

Premise: Split data into train and validation set1

Structural Regularization2 based on Occam’s razor3

1 stop growing when data split not statistically significant
⋆ Use parametric/non-parametric hypothesis tests

1Note: The test set still remains separate
2Like we discussed in the case of Convolutional Neural Networks
3Prefer the shortest hypothesis that fits the data
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Regularization in Decision Tree Learning

Premise: Split data into train and validation set1

Structural Regularization2 based on Occam’s razor3

1 stop growing when data split not statistically significant
⋆ Use parametric/non-parametric hypothesis tests

2 grow full tree, then post-prune tree
⋆ Minimum Description Length (MDL): minimize size(tree) + size(misclassificationsval(tree))
⋆ Achieved as follows: Do until further pruning is harmful
(1) Evaluate impact on validation set of pruning each possible node (plus those below it)
(2) Greedily remove the one that most improves validation set accuracy

1Note: The test set still remains separate
2Like we discussed in the case of Convolutional Neural Networks
3Prefer the shortest hypothesis that fits the data
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Regularization in Decision Tree Learning

Premise: Split data into train and validation set1

Structural Regularization2 based on Occam’s razor3

1 stop growing when data split not statistically significant
⋆ Use parametric/non-parametric hypothesis tests

2 grow full tree, then post-prune tree
⋆ Minimum Description Length (MDL): minimize size(tree) + size(misclassificationsval(tree))
⋆ Achieved as follows: Do until further pruning is harmful
(1) Evaluate impact on validation set of pruning each possible node (plus those below it)
(2) Greedily remove the one that most improves validation set accuracy

3 convert tree into a set of rules and post-prune each rule independently (C4.5 Decision Tree
Learner)

1Note: The test set still remains separate
2Like we discussed in the case of Convolutional Neural Networks
3Prefer the shortest hypothesis that fits the data
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General Minimum Description Length

Data is D and theory about the data is T.

MDL principle: Define I(D|T) and I(T) and choose T such that it minimizes
I(D|T) + I(T).

Also aligned with the Occam Razor principle.

Bayes Estimation: I(D|T) = logP(D|T) and I(T) = logP(T)
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