
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Lecture 24: Other (Non-linear) Classifiers: Decision Tree Learning,
Boosting, and Support Vector Classification

Instructor: Prof. Ganesh Ramakrishnan

October 20, 2016 1 / 25

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Decision Trees: Cascade of step functions on individual features

Outlook

Wind

Humidity

Yes

No

Yes

No

Yes

rain

sunny

overcast

high

normal

strong

weak

October 20, 2016 2 / 25

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Use cases for Decision Tree Learning

October 20, 2016 3 / 25

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Canonical Playtennis Dataset
Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

October 20, 2016 4 / 25

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Decision tree representation

Each internal node tests an attribute
Each branch corresponds to attribute value
Each leaf node assigns a classification

How would we represent:
∧,∨, XOR
(A ∧ B) ∨ (C ∧ ¬D ∧ E)
M of N

October 20, 2016 5 / 25

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Top-Down Induction of Decision Trees
Main loop:

1 ϕi ← the “best” decision attribute for next node
2 Assign ϕi as decision attribute for node
3 For each value of ϕi, create new descendant of node
4 Sort training examples to leaf nodes
5 If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

Which attribute is best?

Answer: That which brings about maximum reduction in impurity Imp(Sv) of the data subset
Sv ⊆ D induced by ϕi = v.

S is a sample of training examples, pCi is proportion of examples belonging to class Ci in S

Entropy measures impurity of S: H(S) ≡
K∑

i=1

−pCi log2 pCi

Gain(S, ϕi) = expected reduction in entropy due to splitting/sorting on ϕi
Gain(S, ϕi) ≡ H(S) −

∑
v∈Values(ϕi)

|Sv|
|S| H(Sv)

October 20, 2016 6 / 25

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Top-Down Induction of Decision Trees
Main loop:

1 ϕi ← the “best” decision attribute for next node
2 Assign ϕi as decision attribute for node
3 For each value of ϕi, create new descendant of node
4 Sort training examples to leaf nodes
5 If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

Which attribute is best?
Answer: That which brings about maximum reduction in impurity Imp(Sv) of the data subset
Sv ⊆ D induced by ϕi = v.

S is a sample of training examples, pCi is proportion of examples belonging to class Ci in S

Entropy measures impurity of S: H(S) ≡
K∑

i=1

−pCi log2 pCi

Gain(S, ϕi) = expected reduction in entropy due to splitting/sorting on ϕi
Gain(S, ϕi) ≡ H(S) −

∑
v∈Values(ϕi)

|Sv|
|S| H(Sv)

October 20, 2016 6 / 25

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Top-Down Induction of Decision Trees
Main loop:

1 ϕi ← the “best” decision attribute for next node
2 Assign ϕi as decision attribute for node
3 For each value of ϕi, create new descendant of node
4 Sort training examples to leaf nodes
5 If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

Which attribute is best?
Answer: That which brings about maximum reduction in impurity Imp(Sv) of the data subset
Sv ⊆ D induced by ϕi = v.

S is a sample of training examples, pCi is proportion of examples belonging to class Ci in S

Entropy measures impurity of S: H(S) ≡
K∑

i=1

−pCi log2 pCi

Gain(S, ϕi) = expected reduction in entropy due to splitting/sorting on ϕi
Gain(S, ϕi) ≡ H(S) −

∑
v∈Values(ϕi)

|Sv|
|S| H(Sv)

October 20, 2016 6 / 25

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Common Impurity Measures (Tutorial 9)

ϕs = arg max
V(ϕi),ϕi

(
Imp(S)−

∑
vij∈V(ϕi)

|Svij |
|S| Imp(Svij)

)
where Sij ⊆ D is a subset of dataset such that each instance x has attribute value ϕi(x) = vij.

Name Imp(S)

Entropy −
K∑

i=1

Pr(Ci) • log(Pr(Ci))

Gini Index
K∑

i=1

Pr(Ci)(1− Pr(Ci))

Class (Min Prob) Error argmin
i
(1− Pr(Ci))

Table: Decision Tree: Impurity measurues

These measure the extent of spread /confusion of the probabilities over the classes
October 20, 2016 7 / 25

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Alternative impurity measures (Tutorial 9)

Figure: Plot of Entropy, Gini Index and Misclassification Accuracy. Source:
https://inspirehep.net/record/1225852/files/TPZ_Figures_impurity.png

These measure the extent of spread/confusion of the probabilities over the classesOctober 20, 2016 8 / 25

https://inspirehep.net/record/1225852/files/TPZ_Figures_impurity.png

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Regularization in Decision Tree Learning

Premise: Split data into train and validation set1

Structural Regularization2 based on Occam’s razor3

1 stop growing when data split not statistically significant
⋆ Use parametric/non-parametric hypothesis tests

2 grow full tree, then post-prune tree
⋆ Minimum Description Length (MDL): minimize size(tree) + size(misclassificationsval(tree))
⋆ Achieved as follows: Do until further pruning is harmful

(1) Evaluate impact on validation set of pruning each possible node (plus those below it)
(2) Greedily remove the one that most improves validation set accuracy

3 convert tree into a set of rules and post-prune each rule independently (C4.5 Decision Tree
Learner)

1Note: The test set still remains separate
2Like we discussed in the case of Convolutional Neural Networks
3Prefer the shortest hypothesis that fits the data

October 20, 2016 9 / 25

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Regularization in Decision Tree Learning

Premise: Split data into train and validation set1

Structural Regularization2 based on Occam’s razor3

1 stop growing when data split not statistically significant
⋆ Use parametric/non-parametric hypothesis tests

2 grow full tree, then post-prune tree
⋆ Minimum Description Length (MDL): minimize size(tree) + size(misclassificationsval(tree))
⋆ Achieved as follows: Do until further pruning is harmful

(1) Evaluate impact on validation set of pruning each possible node (plus those below it)
(2) Greedily remove the one that most improves validation set accuracy

3 convert tree into a set of rules and post-prune each rule independently (C4.5 Decision Tree
Learner)

1Note: The test set still remains separate
2Like we discussed in the case of Convolutional Neural Networks
3Prefer the shortest hypothesis that fits the data

October 20, 2016 9 / 25

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Regularization in Decision Tree Learning

Premise: Split data into train and validation set1

Structural Regularization2 based on Occam’s razor3

1 stop growing when data split not statistically significant
⋆ Use parametric/non-parametric hypothesis tests

2 grow full tree, then post-prune tree
⋆ Minimum Description Length (MDL): minimize size(tree) + size(misclassificationsval(tree))
⋆ Achieved as follows: Do until further pruning is harmful

(1) Evaluate impact on validation set of pruning each possible node (plus those below it)
(2) Greedily remove the one that most improves validation set accuracy

3 convert tree into a set of rules and post-prune each rule independently (C4.5 Decision Tree
Learner)

1Note: The test set still remains separate
2Like we discussed in the case of Convolutional Neural Networks
3Prefer the shortest hypothesis that fits the data

October 20, 2016 9 / 25

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Regularization in Decision Tree Learning

Premise: Split data into train and validation set1

Structural Regularization2 based on Occam’s razor3

1 stop growing when data split not statistically significant
⋆ Use parametric/non-parametric hypothesis tests

2 grow full tree, then post-prune tree
⋆ Minimum Description Length (MDL): minimize size(tree) + size(misclassificationsval(tree))
⋆ Achieved as follows: Do until further pruning is harmful

(1) Evaluate impact on validation set of pruning each possible node (plus those below it)
(2) Greedily remove the one that most improves validation set accuracy

3 convert tree into a set of rules and post-prune each rule independently (C4.5 Decision Tree
Learner)

1Note: The test set still remains separate
2Like we discussed in the case of Convolutional Neural Networks
3Prefer the shortest hypothesis that fits the data

October 20, 2016 9 / 25

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

General Minimum Description Length

Data is D and theory about the data is T.
MDL principle: Define I(D|T) and I(T) and choose T such that it minimizes
I(D|T) + I(T).
Also aligned with the Occam Razor principle.
Bayes Estimation: I(D|T) = log P(D|T) and I(T) = log P(T)

October 20, 2016 10 / 25

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

General Feature Selection based on Gain

S is a sample of training examples, pCi is proportion of examples with class Ci in S

Entropy measures impurity of S: H(S) ≡
K∑

i=1

−pCi log2 pCi

Selecting R best attributes: Let R = ∅
Gain(S, ϕi) = expected Gain due to choice of ϕi Eg: Gain based on entropy -
Gain(S, ϕi) ≡ H(S) −

∑
v∈Values(ϕi)

|Sv|
|S| H(Sv)

Do:
1 ϕ∗ = argmax

ϕi
Gain(S, ϕi)

2 R = R∪ {ϕ∗}
Until |R| = R

Q: What other measures of Gain could you think of?

October 20, 2016 11 / 25

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

General Feature Selection based on Gain

S is a sample of training examples, pCi is proportion of examples with class Ci in S

Entropy measures impurity of S: H(S) ≡
K∑

i=1

−pCi log2 pCi

Selecting R best attributes: Let R = ∅
Gain(S, ϕi) = expected Gain due to choice of ϕi Eg: Gain based on entropy -
Gain(S, ϕi) ≡ H(S) −

∑
v∈Values(ϕi)

|Sv|
|S| H(Sv)

Do:
1 ϕ∗ = argmax

ϕi
Gain(S, ϕi)

2 R = R∪ {ϕ∗}
Until |R| = R

Q: What other measures of Gain could you think of?

October 20, 2016 11 / 25

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Injecting Randomness: Bagging and Ensemble
Main loop:

1 ϕi ← “best” decision attribute for next node
2 Assign ϕi as decision attribute for node
3 For each value of ϕi, create new descendant of node
4 Sort training examples to leaf nodes
5 If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

Steps (1) and (4) prohibitive with large numbers of attributes (1000s) and training examples
(100000s). Alternatives?

Uniformly at random (with replacements), sample subsets Ds ⊆ D of the training data,
Φs ⊆ Φ of the attribute set and construct decision tree Ts for each such random subset.
Random Forest Algorithm: For s = 1 to B repeat:

1 Bagging: Draw a bootstrap sample Ds of size ms from the training data D of size m
2 Grow a random decision tree Ts to Ds by recursively repeating steps (1) - (5) of decision tree

construction algorithm„ with following difference to step (1)
1 ϕi ← ‘best” decision attribute for next node from Φs where Φs ⊆ Φ is sample of size ns

Output: Ensemble of Trees {Ts}B1

October 20, 2016 12 / 25

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Injecting Randomness: Bagging and Ensemble
Main loop:

1 ϕi ← “best” decision attribute for next node
2 Assign ϕi as decision attribute for node
3 For each value of ϕi, create new descendant of node
4 Sort training examples to leaf nodes
5 If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

Steps (1) and (4) prohibitive with large numbers of attributes (1000s) and training examples
(100000s). Alternatives?

Uniformly at random (with replacements), sample subsets Ds ⊆ D of the training data,
Φs ⊆ Φ of the attribute set and construct decision tree Ts for each such random subset.
Random Forest Algorithm:

For s = 1 to B repeat:
1 Bagging: Draw a bootstrap sample Ds of size ms from the training data D of size m
2 Grow a random decision tree Ts to Ds by recursively repeating steps (1) - (5) of decision tree

construction algorithm„ with following difference to step (1)
1 ϕi ← ‘best” decision attribute for next node from Φs where Φs ⊆ Φ is sample of size ns

Output: Ensemble of Trees {Ts}B1

October 20, 2016 12 / 25

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Injecting Randomness: Bagging and Ensemble
Main loop:

1 ϕi ← “best” decision attribute for next node
2 Assign ϕi as decision attribute for node
3 For each value of ϕi, create new descendant of node
4 Sort training examples to leaf nodes
5 If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

Steps (1) and (4) prohibitive with large numbers of attributes (1000s) and training examples
(100000s). Alternatives?

Uniformly at random (with replacements), sample subsets Ds ⊆ D of the training data,
Φs ⊆ Φ of the attribute set and construct decision tree Ts for each such random subset.
Random Forest Algorithm: For s = 1 to B repeat:

1 Bagging: Draw a bootstrap sample Ds of size ms from the training data D of size m
2 Grow a random decision tree Ts to Ds by recursively repeating steps (1) - (5) of decision tree

construction algorithm„ with following difference to step (1)

1 ϕi ← ‘best” decision attribute for next node from Φs where Φs ⊆ Φ is sample of size ns

Output: Ensemble of Trees {Ts}B1

October 20, 2016 12 / 25

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Injecting Randomness: Bagging and Ensemble
Main loop:

1 ϕi ← “best” decision attribute for next node
2 Assign ϕi as decision attribute for node
3 For each value of ϕi, create new descendant of node
4 Sort training examples to leaf nodes
5 If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

Steps (1) and (4) prohibitive with large numbers of attributes (1000s) and training examples
(100000s). Alternatives?

Uniformly at random (with replacements), sample subsets Ds ⊆ D of the training data,
Φs ⊆ Φ of the attribute set and construct decision tree Ts for each such random subset.
Random Forest Algorithm: For s = 1 to B repeat:

1 Bagging: Draw a bootstrap sample Ds of size ms from the training data D of size m
2 Grow a random decision tree Ts to Ds by recursively repeating steps (1) - (5) of decision tree

construction algorithm„ with following difference to step (1)
1 ϕi ← ‘best” decision attribute for next node from Φs where Φs ⊆ Φ is sample of size ns

Output: Ensemble of Trees {Ts}B1
October 20, 2016 12 / 25

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Random Forest applied to Query (Test) data
Output of Random forest Algorithm: Ensemble of Trees {Ts}B1

Consider Prt (c | x) for each each tree t ∈ T for each class c = [1..K] based on the
proportion of training points in class c of the leaf node determined by the path of query
point x on tree t
Decision for a new test point x:

Pr (c | x) = 1
T
∑T

t=1 Prt (c | x)
For m data points, with |T| =

√
m, consistency results have been proved4

4Brieman et. al. http://www.jmlr.org/papers/volume9/biau08a/biau08a.pdf and
https://www.microsoft.com/en-us/research/publication/
decision-forests-a-unified-framework-for-classification-regression-density-estimation-manifold-learning-and-semi-supervised-learning/
for several other results on random forests

October 20, 2016 13 / 25

http://www.jmlr.org/papers/volume9/biau08a/biau08a.pdf
https://www.microsoft.com/en-us/research/publication/decision-forests-a-unified-framework-for-classification-regression-density-estimation-manifold-learning-and-semi-supervised-learning/
https://www.microsoft.com/en-us/research/publication/decision-forests-a-unified-framework-for-classification-regression-density-estimation-manifold-learning-and-semi-supervised-learning/

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Random Forest applied to Query (Test) data
Output of Random forest Algorithm: Ensemble of Trees {Ts}B1

Consider Prt (c | x) for each each tree t ∈ T for each class c = [1..K] based on the
proportion of training points in class c of the leaf node determined by the path of query
point x on tree t
Decision for a new test point x: Pr (c | x) = 1

T
∑T

t=1 Prt (c | x)
For m data points, with |T| =

√
m, consistency results have been proved4

4Brieman et. al. http://www.jmlr.org/papers/volume9/biau08a/biau08a.pdf and
https://www.microsoft.com/en-us/research/publication/
decision-forests-a-unified-framework-for-classification-regression-density-estimation-manifold-learning-and-semi-supervised-learning/
for several other results on random forests

October 20, 2016 13 / 25

http://www.jmlr.org/papers/volume9/biau08a/biau08a.pdf
https://www.microsoft.com/en-us/research/publication/decision-forests-a-unified-framework-for-classification-regression-density-estimation-manifold-learning-and-semi-supervised-learning/
https://www.microsoft.com/en-us/research/publication/decision-forests-a-unified-framework-for-classification-regression-density-estimation-manifold-learning-and-semi-supervised-learning/

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Random Forest: Balancing Bias and Variance

Decision for a new test point x: Pr (c | x) = 1
T
∑T

t=1 Prt (c | x)
Each single decision tree, viewd as an estimator of the ideal tree has high variance, with
very less bias (assumptions)
But since the decision trees Ti and Tj are uncorrelated, when decision is averaged out
across them, it tends to be very accurate.

October 20, 2016 14 / 25

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Extra Reading: Bias Variance Trade-off
Instructor: Prof. Ganesh Ramakrishnan

October 20, 2016 15 / 25

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Bias and Variance

Bias and Variance are two important properties of a machine learning model.
They help us measure the accuracy of the model and the dependence between the trained
model and the training data set. (Q: Is greater dependence good?)
Variance of a model is the variance in the prediction of the models trained over different
training data. (Is high variance good?)
Bias of a model is the difference between the expected prediction of the model and the
true values which we are trying to predict. (Is low bias good?)
In this lecture we will talk about the trade-off between the two.

October 20, 2016 16 / 25

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Bias and Variance

Figure: The distance of the cluster from the eye represents bias and the spread of the cluster represents
variance.
(src: zhangjunhd.github.io/2014/10/01/bias-variance-tradeoff.html) October 20, 2016 17 / 25

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Expected loss of a model

Say, we are given the training data TD containing values for x and the target variable is y.
P(x, y) is the joint distribution over x and y. f(x) is our target function (as this function
will be dependent on TD as well it is more appropriate to call it f(x,TD)).
To find the expected loss of the model over the distribution of the training data, we first
simplify the expected loss expression. For square loss we get,

EP(x,y)[(f(x)− y)2] =
∫

x

∫
y
(f(x)− y)2P(x, y)dxdy

October 20, 2016 18 / 25

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

EP(x,y)[(f(x)− y)2]
=

∫
x
∫

y(f(x)− y)2P(x, y)dxdy
=

∫
x
∫

y(f(x)− E(y/x) + E(y/x)− y)2P(x, y)dxdy
=

∫
x
∫

y(f(x)− E(y/x))2P(x, y)dxdy +
∫

x
∫

y(E(y/x)− y)2P(x, y)dxdy
+ 2

∫
x
∫

y(f(x)− E(y/x))(E(y/x)− y)P(x, y)dxdy

We will rewrite the 3rd term in the final equation as:
2
∫

x
∫

y(f(x)− E(y/x))(E(y/x)− y)P(x, y)dxdy
= 2

∫
x(f(x)− E(y/x))(

∫
y(E(y/x)− y)P(y|x)dy)P(x)dx

By definition
∫

y yP(y|x)dy = E(y/x). Therefore the inner integral is 0.

October 20, 2016 19 / 25

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Finally we get,
EP(x,y)[(f(x)− y)2] =

∫
x
∫

y(f(x)− E(y/x))2P(x, y)dxdy +
∫

x
∫

y(E(y/x)− y)2P(x, y)dxdy

The 2nd term is independent of f. Can you think of a situation when the 2nd term will be 0?
Q: For what value of f will this loss be minimized?

October 20, 2016 20 / 25

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The minimum loss will be achieved when f(x) = E(y/x)
Now let us find the expected loss over the training data. Using our previous analysis we see
that only the (f(x)− E(y/x))2 component can be minimized. (Remember f is dependent on
TD)
(Simple Q: Why is integrating over TD and (x, y) the same)∫

TD
(f(x,TD)− E(y/x))2P(TD)dTD

= ETD [(f(x,TD)− ETD [f(x,TD)] + ETD [f(x,TD)]− E(y/x))2]
= ETD [(f(x,TD)− ETD [f(x,TD)])2 + (ETD [f(x,TD)]− E(y/x))2
−2(ETD [f(x,TD)]− E(y/x))(f(x,TD)− ETD [f(x,TD)])]

The last term vanishes (WHY?) and we get:
ETD [(f(x,TD)− ETD [f(x,TD)])2] + (ETD [f(x,TD)]− E(y/x))2

October 20, 2016 21 / 25

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Bias and Variance

ETD [(f(x,TD)− ETD [f(x,TD)])2] + (ETD [f(x,TD)]− E(y/x))2
= Variance + Bias2
Finally we say the expected loss of the model is:
Variance + Bias2 + Noise

The noise in the measurement can cause errors in prediction. That is depicted by the third
term.

October 20, 2016 22 / 25

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Interpret with example - Linear Regression

If we were to take the linear regression with a low degree polynomial, we are introducing a bias
that the dependency of the predicted variable is simple.
Similarly when we add a regularizer term, we are implicitly biased towards weights that are not
big.
By being biased towards a smaller class of models the predicted values will have smaller
variation when trained over different samples (Low Variance) and may fit poorly as compared
to a complex model (High Bias).
The low variance makes model generalizable over the samples.

October 20, 2016 23 / 25

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Interpret with example - Linear Regression

Suppose we complicate our regression model by increasing degree of the polynomial used.
As we have seen before this will lead to complex curves and will tend to pass through all points.
Here we have put fewer restrictions on our model and hence have less bias.
For a given training data our prediction could be very good (Low Bias).
Although if we consider different Training Sets are models could vary wildly (High Variance).
This reduces the generalizability of the model.

October 20, 2016 24 / 25

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conclusion

This is the Bias-Variance Tradeoff in action. Simple models usually have low variance but high
bias and complex models usually have high variance and low bias.
Food for Thought: So how should we choose our model?
Also whenever you learn about a new algorithm it would be a good exercise to see how the
tradeoff works there.
For example, think how the tradeoff manifests itself in the K Nearest Neighbor algorithm.

October 20, 2016 25 / 25

