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Lecture 25: Bagging and Boosting with Decision Trees, Bias-Variance
Tradeoff, Feature Selection

Instructor: Prof. Ganesh Ramakrishnan
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General Feature Selection based on Gain

S is a sample of training examples, pCi is proportion of examples with class Ci in S

Entropy measures impurity of S: H(S) ≡
K∑

i=1

−pCi log2 pCi

Selecting R best attributes: Let R = ∅
Gain(S, ϕi) = expected Gain due to choice of ϕi Eg: Gain based on entropy -
Gain(S, ϕi) ≡ H(S) −

∑
v∈Values(ϕi)

|Sv|
|S| H(Sv)

Do:
1 ϕ∗ = argmax

ϕi ̸∈R
Gain(S, ϕi)

2 R = R∪ {ϕ∗}
Until |R| = R

Q: What other measures of Gain could you think of?
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Injecting Randomness: Bagging and Ensemble
Main loop:

1 ϕi ← “best” decision attribute for next node
2 Assign ϕi as decision attribute for node
3 For each value of ϕi, create new descendant of node
4 Sort training examples to leaf nodes...............

Steps (1) and (4) prohibitive and excessively greedy with large numbers of attributes
(1000s) and training examples (100000s). Alternatives?

Bagging = Boostrap aggregating
Uniformly at random (with replacements), sample subsets Ds ⊆ D of the training data,
Φs ⊆ Φ of the attribute set and construct decision tree Ts for each such random subset.
Random Forest Algorithm: For s = 1 to B repeat:

1 Boostrapping: Draw a random sample Ds (with replacement) of size ms from the training
data D of size m

2 Grow a random decision tree Ts to Ds by recursively repeating steps (1) - (5) of decision tree
construction algorithm„ with following difference to step (1)

1 ϕi ← ‘best” decision attribute for next node from Φs where Φs ⊆ Φ is sample of size ns

Output: Ensemble of Trees {Ts}B1
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Random Forest applied to Query (Test) data
Output of Random forest Algorithm: Ensemble of Weakly Learnt Trees {Ts}B1

Consider Prt (c | x) for each each weakly learnt tree t ∈ B for each class c = [1..K] based
on the proportion of training points in class c of the leaf node determined by the path of
query point x on tree t
Decision for a new test point x:

Pr (c | x) = 1
|B|
∑B

t=1 Prt (c | x)
For m data points, with |B| =

√
m, consistency results have been proved1

1Brieman et. al. http://www.jmlr.org/papers/volume9/biau08a/biau08a.pdf and
https://www.microsoft.com/en-us/research/publication/
decision-forests-a-unified-framework-for-classification-regression-density-estimation-manifold-learning-and-semi-supervised-learning/
for several other results on random forests
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Random Forest: Balancing Bias and Variance

Decision for a new test point x: Pr (c | x) = 1
|B|
∑B

t=1 Prt (c | x)
Each single decision tree, viewed as an estimator of the ideal tree has high variance, with
very less bias (assumptions)
But since the decision trees Ti and Tj are uncorrelated, when decision is averaged out
across them, it tends to

▶ have low variance
▶ be very accurate
▶ not overfit
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Bias and Variance

Bias and Variance are two important properties of a machine learning model.
They help us measure the accuracy of the model and the dependence between the trained
model and the training data set. (Q: Is greater dependence good?)
Variance of a model is the variance in its prediction when trained over different training
data sets. (Is high variance good?)
Bias of a model is the difference between the expected prediction of the model and the
true values which we are trying to predict. (Is low bias good?)

▶ Eg: For the Multivariate Gaussian, the Maximum Likelihood estimator of its mean is
unbiased, while of its covariance estimator is biased

▶ EN (µ,Σ) (µ̂mle)− µ = 0 (zero bias)
▶ EN (µ,Σ)

(
Σ̂mle

)
− Σ = 1

n−1Σ (non-zero bias)

One can quantify the trade-off between bias and variance. Eg:
▶ Expected squared loss error = variance + bias2 + noise (see optional slides for details)
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Bias and Variance

Figure: The distance of the cluster from the eye represents bias and the spread of the cluster represents
variance.
(src: zhangjunhd.github.io/2014/10/01/bias-variance-tradeoff.html)
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Weak Models: From Bagging to Boosting

Bagging: Ensemble of Independently Weakly Learnt Models (Eg: Trees {Ts}B1 ):
Pr (c | x) = 1

|B|
∑B

t=1 Prt (c | x)

Boosting: Wtd combinations of Iteratively Weakly Learnt Models (Eg: Trees {αt,Tt}B1 ):
Pr (c | x) = 1

|B|
∑B

t=1 αt Prt (c | x) where αt = (1/2 ln
(
(1− errt)/errt

)
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Adaptive Boosting of Iteratively Learnt Weak Models

Error driven weighted linear combinations of models: αt = (1/2) ln
(
(1− errt)/errt

)

Reweighting of each data instance x(i) before learning the next model Tt:

ξi = ξi exp
(
αtδ

(
y(i) ̸= Tt

(
x(i)
)))

. Note that errt =
∑m

i=1 ξiδ
(

y(i) ̸=Tt(x(i))
)

∑m
i=1 ξi
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Adaboost Algorithm

Initialize each instance weight ξi =
1
m . For t = 1 to B do:

1 Learn the tth model Tt by weighing example x(i) by ξi

2 Compute the corresponding error on the training set errt =
∑m

i=1 ξiδ
(

y(i) ̸=Tt(x(i))
)

∑m
i=1 ξi

3 Compute the error driven weighted linear factor for Tt: αt = (1/2) ln
(
(1− errt)/errt

)
4 Reweigh each data instance x(i) before learning the next model:

ξi = ξi exp
(
αtδ

(
y(i) ̸= Tt

(
x(i)
)))

.
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Adaboost Algorithm: Motivation (Tutorial 9)
Freund & Schapire, 1995: Converting a “weak” PAC2 learning algorithm that performs
just slightly better than random guessing into one with arbitrarily high accuracy.
Let Ct(x) =

∑t
j=1 αjTj(x) be the boosted linear combination of classifiers until tth

iteration.
Let the error to be minimized over αt be the sum of its exponential loss on each data
point,

Et =
m∑

i=1

δ

(
y(i) ̸= sign

(
Ct
(

x(i)
)))

≤
m∑

i=1

exp
(
−y(i)Ct

(
x(i)
))

Claim1: The error that is the sum of exponential loss on each data point is an upper
bound on the simple sum of training errors on each data point
Claim2: αt = (1/2) ln

(
(1− errt)/errt

)
actually minimizes this upper bound.

Claim3: If each classifier is slightly better than random, that is if errt < 1/K, Adaboost
achieves zero training error exponentially fast

2http://web.cs.iastate.edu/~honavar/pac.pdf
November 13, 2016 11 / 26
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Extra Reading: Bias Variance Trade-off
Instructor: Prof. Ganesh Ramakrishnan
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Expected loss of a model

Say, we are given the training data TD containing values for x and the target variable is y.
P(x, y) is the joint distribution over x and y. f(x) is our target function (as this function
will be dependent on TD as well it is more appropriate to call it f(x,TD)).
To find the expected loss of the model over the distribution of the training data, we first
simplify the expected loss expression. For square loss we get,

EP(x,y)[(f(x)− y)2] =
∫

x

∫
y
(f(x)− y)2P(x, y)dxdy

November 13, 2016 13 / 26
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EP(x,y)[(f(x)− y)2]
=
∫

x
∫

y(f(x)− y)2P(x, y)dxdy
=
∫

x
∫

y(f(x)− E(y/x) + E(y/x)− y)2P(x, y)dxdy
=
∫

x
∫

y(f(x)− E(y/x))2P(x, y)dxdy +
∫

x
∫

y(E(y/x)− y)2P(x, y)dxdy
+ 2

∫
x
∫

y(f(x)− E(y/x))(E(y/x)− y)P(x, y)dxdy

We will rewrite the 3rd term in the final equation as:
2
∫

x
∫

y(f(x)− E(y/x))(E(y/x)− y)P(x, y)dxdy
= 2

∫
x(f(x)− E(y/x))(

∫
y(E(y/x)− y)P(y|x)dy)P(x)dx

By definition
∫

y yP(y|x)dy = E(y/x). Therefore the inner integral is 0.
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Finally we get,
EP(x,y)[(f(x)− y)2] =

∫
x
∫

y(f(x)− E(y/x))2P(x, y)dxdy +
∫

x
∫

y(E(y/x)− y)2P(x, y)dxdy

The 2nd term is independent of f. Can you think of a situation when the 2nd term will be 0?
Q: For what value of f will this loss be minimized?
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The minimum loss will be achieved when f(x) = E(y/x)
Now let us find the expected loss over the training data. Using our previous analysis we see
that only the (f(x)− E(y/x))2 component can be minimized. (Remember f is dependent on
TD)
(Simple Q: Why is integrating over TD and (x, y) the same)∫

TD
(f(x,TD)− E(y/x))2P(TD)dTD

= ETD [(f(x,TD)− ETD [f(x,TD)] + ETD [f(x,TD)]− E(y/x))2]
= ETD [(f(x,TD)− ETD [f(x,TD)])2 + (ETD [f(x,TD)]− E(y/x))2
−2(ETD [f(x,TD)]− E(y/x))(f(x,TD)− ETD [f(x,TD)])]

The last term vanishes (WHY?) and we get:
ETD [(f(x,TD)− ETD [f(x,TD)])2] + (ETD [f(x,TD)]− E(y/x))2
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Bias and Variance

ETD [(f(x,TD)− ETD [f(x,TD)])2] + (ETD [f(x,TD)]− E(y/x))2
= Variance + Bias2
Finally we say the expected loss of the model is:
Variance + Bias2 + Noise

The noise in the measurement can cause errors in prediction. That is depicted by the third
term.
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Interpret with example - Linear Regression

If we were to take the linear regression with a low degree polynomial, we are introducing a bias
that the dependency of the predicted variable is simple.
Similarly when we add a regularizer term, we are implicitly biased towards weights that are not
big.
By being biased towards a smaller class of models the predicted values will have smaller
variation when trained over different samples (Low Variance) and may fit poorly as compared
to a complex model (High Bias).
The low variance makes model generalizable over the samples.
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Interpret with example - Linear Regression

Suppose we complicate our regression model by increasing degree of the polynomial used.
As we have seen before this will lead to complex curves and will tend to pass through all points.
Here we have put fewer restrictions on our model and hence have less bias.
For a given training data our prediction could be very good (Low Bias).
Although if we consider different Training Sets are models could vary wildly (High Variance).
This reduces the generalizability of the model.
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Conclusion

This is the Bias-Variance Tradeoff in action. Simple models usually have low variance but high
bias and complex models usually have high variance and low bias.
Food for Thought: So how should we choose our model?
Also whenever you learn about a new algorithm it would be a good exercise to see how the
tradeoff works there.
For example, think how the tradeoff manifests itself in the K Nearest Neighbor algorithm.
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Support Vector Machines
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Perceptron does not find the best seperating hyperplane, it finds any seperating
hyperplane.
In case the initial w does not classify all the examples, the seperating hyperplane
corresponding to the final w∗ will often pass through an example.
The seperating hyperplane does not provide enough breathing space – this is what SVMs
address!
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w⊤ϕ(x) + b ≥ +1 for y = +1
w⊤ϕ(x) + b ≤ −1 for y = −1
w, ϕ ∈ IRm

There is large margin to seperate the +ve and -ve examples
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Overlapping examples

When the examples are not linearly seperable,
we need to consider the slackness ξi of the
examples xi (how far a misclassified point is
from the seperating hyperplane, always +ve):

w⊤ϕ(xi) + b ≥ +1− ξi (for yi = +1)
w⊤ϕ(xi) + b ≤ −1 + ξi (for yi = −1)

Multiplying yi on both sides, we get:
yi(w⊤ϕ(xi) + b) ≥ 1− ξi, ∀i = 1, . . . , n
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Maximize the margin

We maximize the margin given by (ϕ(x+)− ϕ(x−))⊤[ w
∥w∥ ]

Here, x+ and x− lie on boundaries of the margin.

Verify that w is perpendicular to the seperating surface:
at the seperating surface, the dot product of w and ϕ(x) is 0 (with b captured), which is
only possible if w and ϕ(x) are perpendicular.
We project the vectors ϕ(x+) and ϕ(x−) on w, and normalize by w as we are only
concerned with the direction of w and not its magnitude.
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Simplifying the margin expression

Maximize the margin (ϕ(x+)− ϕ(x−))⊤[ w
∥w∥ ]

At x+: y+ = 1, ξ+ = 0 hence, (w⊤ϕ(x+) + b) = 1 — 1
At x−: y− = 1, ξ− = 0 hence, −(w⊤ϕ(x−) + b) = 1 — 2
Adding 2 to 1 ,
w⊤(ϕ(x+)− ϕ(x−)) = 2

Thus, the margin expression to maximize is: 2
∥w∥
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