Lecture 25: Bagging and Boosting with Decision Trees, Bias-Variance
Tradeoff, Feature Selection
Instructor: Prof. Ganesh Ramakrishnan



General Feature Selection based on Gain .* Intuheon s y
"nexd besy athbute 1 grh\-; next best ctvibuke v \nclude

@ Sis a sample of training examples, pc, is proportion of examples with class Cjin S
K

e Entropy measures impurity of S: H(S) = Z —pc; log, pc;
i=1

@ Selecting R best attributes: Let R =)

e Gain(S, ¢;) = expected Gain due to choice of ¢; Eg: Gain based on entropy -
Gain(57 ¢:) = H(S) - ZveValues( o) JE[H(S )

Do: S neluden
o ¢* _ arg;n;% Géllm "l?b be{o‘c ': \N\Tu'ﬂl!’j agﬁﬁ '¢ J
@ R=RU{s"} svar emals ¢

Until [R| = & S¥ A

aa“\(s o\m\\ m\'ﬂ‘l’ be \a-{qes')c \mha\l

9"[&\5 Aeal’ s nduded 10 K Gain(S. C‘"‘“F ‘) shostd ke ms\ﬂme,,'k
w?\“s}'w\c& medhg 2012. .




General Feature Selection based on Gain

@ Sis a sample of training examples, pc, is proportion of examples with class Cjin S
K

e Entropy measures impurity of S: H(S) = Z —pc; log, pc;
i=1

@ Selecting R best attributes: Let R = ()

e Gain(S, ¢;) = expected Gain due to choice of ¢; Eg: Gain based on entropy -
. _ Sy
Gam(sv ¢I) = H(S) - ZveValues(qﬁ,-) JE[ (SV)

Do:
Q ¢ = arggiw;?)é Gain(S, ¢;)
Q@ R=RU{¢*}
Until [R| = R /,"u-!'ai"“l 1

Q: What other measures of Gain could you think of?
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Injecting Randomness: Bagging and Ensemble

© Assign ¢; as decision attribute for node
© For each value of ¢;, create new descendant of node
@ Sort training examples to leaf nodes...............

Steps (1 (1) and (4) prohibitive and excessively greedy,)it\hlarge numbers of attributes

Main loop:
@ ¢; «+ “best” decision attribute for next node } 'Re“‘[’ 5:'
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Injecting Randomness: Bagging and Ensemble
Main loop:
Q@ ¢; + “best” decision attribute for next node
@ Assign ¢; as decision attribute for node
© For each value of ¢;, create new descendant of node
@ Sort training examples to leaf nodes...............
Steps (1) and (4) prohibitive and excessively greedy with large numbers of attributes
(1000s) and training examples (100000s). Alternatives?
e Bagging = Boostrap aggregating
e Uniformly at random (with replacements), sample subsets Ds C D of the training data,

'13 C ® of the attribute set and construct decision tree T for each such random subset.
@ Random Forest Algonthm
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Injecting Randomness: Bagging and Ensemble
Main loop:
© ¢; < “best” decision attribute for next node
@ Assign ¢; as decision attribute for node
© For each value of ¢;, create new descendant of node
@ Sort training examples to leaf nodes...............
Steps (1) and (4) prohibitive and excessively greedy with large numbers of attributes
(1000s) and training examples (100000s). Alternatives?
e Bagging = Boostrap aggregating
e Uniformly at random (with replacements), sample subsets Ds C D of the training data,
®, C ® of the attribute set and construct decision tree T for each such random subset.
@ Random Forest Algorithm: For s =1 to B repeat:
© Boostrapping: Draw a random sample D (with replacement) of size m; from the training
data D of size m

@ Grow a random decision tree T to D by recursively repeating steps (1) - (5) of decision tree
construction algorithm,, with following difference to step (
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Injecting Randomness: Bagging and Ensemble

Main loop:
Q@ ¢; + “best” decision attribute for next node
@ Assign ¢; as decision attribute for node
© For each value of ¢;, create new descendant of node
@ Sort training examples to leaf nodes...............
Steps (1) and (4) prohibitive and excessively greedy with large numbers of attributes
(1000s) and training examples (100000s). Alternatives?
e Bagging = Boostrap aggregating
e Uniformly at random (with replacements), sample subsets Ds C D of the training data,
®, C ® of the attribute set and construct decision tree T for each such random subset.
@ Random Forest Algorithm: For s =1 to B repeat:
© Boostrapping: Draw a random sample D (with replacement) of size m; from the training
data D of size m
@ Grow a random decision tree T to Ds by recursively repeating steps (1) - (5) of decision tree

construction algorithm,, with following difference to step (1)
@ ¢, «+ ‘best” decision attribute for next node from ®; where ®; C ¢ is sample of size ns

@ Output: Ensemble of Trees {Ts}lB
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e Consider Pr;(c| x) for each each weakly learnt tree t € B for each class ¢ = [1..K] based
on the proportion of training points in class c of the leaf node determined by the path of

query point X on tree t (?Y{’(( %) oWl hLe move PﬂnCTJ)tJ g LE z\'c)

@ Decision for a new test point X:

Polcl) =Ls R (=)

!Brieman et. al. http://www. jmlr.ofg/papers/volume9d/biau08a/biaud8a.pdf and
https://www.microsoft.com/en-us/research/publication/
decision-forests-a-unified-framework-for-classification-regression-density-estimation-manifol
for several other results on random forests
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Random Forest applied to Query (Test) data
Output of Random forest Algorithm: Ensemble of Weakly Learnt Trees { T,}2
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e Consider Pr;(c| x) for each each weakly learnt tree t € B for each class ¢ = [1..K] based
on the proportion of training points in class c of the leaf node determined by the path of
query point x on tree t

@ Decision for a new test point x: Pr(c|x) = ﬁ Zthl Pre(c| x)

e For m data points, with |B| = \/m, consistency results have been proved®

!Brieman et. al. http://www.jmlr.org/papers/volume9/biau08a/biaud8a.pdf and
https://www.microsoft.com/en-us/research/publication/
decision-forests-a-unified-framework-for-classification-regression-density-estimation-manifol
for several other results on random forests

e 4 November 13, 2016 4 /26




Random Forest: Balancing Bias and Variance

pehoere>
@ Decision for a new test point x: Pr(c| x) = ﬁ Zle Pre(c| x) ok k\m'*-s & 1”‘”1%
@ Each single decision tree, viewed as an estimator of the ideal tree has hlgh variance, with
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@ But since the decision trees T; and T; are uncorrelated, when decision”is averaged out
across them, it tends to
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Random Forest: Balancing Bias and Variance

@ Decision for a new test point x: Pr(c| x) = ﬁ Zle Pre(c| x)
@ Each single decision tree, viewed as an estimator of the ideal tree has high variance, with
very less bias (assumptions)

@ But since the decision trees T; and T; are uncorrelated, when decision is averaged out
across them, it tends to

» have low variance

» be very accurate

» not overfit
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Bias and Variance

@ Bias and Variance are two important properties of a machine learning model.

@ They help us measure the accuracy of the model and the dependence between the trained
model and the training data set. (Q: Is greater dependence good?)

@ Variance of a model is the variance in its prediction when trained over different training
data sets. (Is high variance good?)

@ Bias of a model is the difference between the expected prediction of the model and the
true values which we are trying to predict. (Is low bias good?)

» Eg: For the Multivariate Gaussian, the Maximum Likelihood estimator of its mean is
unbiased, while of its covariance estimator is biased
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Bias and Variance

@ Bias and Variance are two important properties of a machine learning model.

@ They help us measure the accuracy of the model and the dependence between the trained
model and the training data set. (Q: Is greater dependence good?)

@ Variance of a model is the variance in its prediction when trained over different training
data sets. (Is high variance good?)
@ Bias of a model is the difference between the expected prediction of the model and the
true values which we are trying to predict. (Is low bias good?)
» Eg: For the Multivariate Gaussian, the Maximum Likelihood estimator of its mean is
unbiased, while of its covariance estimator is biased thj' Rqau\q.n1a.\—\m
> Exgs) (ftmie) — p = 0 (zero bias) W\CY¥ €0SeS b

» Exuy) (Zm/e) — ¥ = =L=% (non-zero bias) / \“5\5‘}\:_\3 YWesk Ww;—=6
r

@ One can quantify the trade-off between bias and yariance. Eg:
» Expected squared loss error = variance + bias®’ + noise (see optional slides for details) \
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Bias and Variance
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Figure: The distance of the cluster from the eye represents bias and the spread of the cluster represents

variance.
(src: zhangjunhd.github.io/2014/10/01/bias-variance-tradeoff.html/)




Weak Models: From Bagging to Boosting
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Bagging: Ensemble of Independently Weakly Learnt Models (Eg: Trees {Ts}lB):
B
Pr(c| x) = i 5, Pre (| %)
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Weak Models: From Bagging to Boosting

Bagging: Ensemble of Independently Weakly Learnt Models (
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Boosting: Wtd combinations of Iteratively Weakly Learnt Models (Eg: Trees {ay, T:}5):
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Weak Models: From Bagging to Boosting
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Bagging: Ensemble of Independently Weakly Learnt Models (Eg: Trees {Ts}lB):
B
Pr(c| x) = i 5, Pre (| %)
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Boosting: Wtd combinations of Iteratively Weakly Learnt Models (Eg: Trees {ay, T:}5):
Pr(c|x)= ﬁ 2, arPre(c| x) wherefay = (1/21n (1 — erry) /err, P \MT'{'d Los®
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Adaptive Boosting of lteratively Learnt Weak Models

Error driven weighted linear combinations of models: oy = (1/2) In ((1 — err¢)/err)



Adaptive Boosting of lteratively Learnt Weak Models
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Error driven weighted linear combinations of models: oy = (1/2) In ((1 — err¢)/err)
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Adaboost Algorithm ws‘“é%u

— GQJJ- > A d
\ A0y
Aaphive  pooshe 0 < w°
A GJ? ‘J 5 W?\L o0 "6 So(:\\
Initialize each instance weight & = +. For t =1 to B do: <% '\69
@ Learn the t*" model T; by welghlng example x() by & -~ { ﬁ\
m &5y D £ T (%D
@ Compute the corresponding error on the training set err; = et gm i, ( ))
i=16i

© Compute the error driven weighted linear factor for Ty ay = (1/2)In ((1 — erry)/erry)

@ Reweigh each data instance x() before learning the next model:

€ = Erexp (at5 (W AT, (x(i)>)>.
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Adaboost Algorithm: Motivation (Tutorial 9)

o Freund & Schapire, 1995: Converting a “weak” PAC? learning algorithm that performs

just slightly better than random guessing into one with arbitrarily high accuracy.
o Let Gi(x) = Z _, a;Tj(x) be the boosted linear combination of classifiers until tt
iteration.

@ Let the error to be minimized over a; be the sum of its exponential loss on each data

o E; = ,.Zm;5 (y(,) £ sign (Cf< )>> = ZEXP ( ( (I))>

@ Claiml: The error that is the sum of exponential loss on each data point is an upper
bound on the simple sum of training errors on each data point

o Claim2: oy = (1/2)In ((1 — erry)/errt) actually minimizes this upper bound.

e Claim3: If each classifier is slightly better than random, that is if err; < 1/K, Adaboost
achieves zero training error exponentially fast

*http://web.cs.iastate.edu/~honavar/pac.pdf
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Extra Reading: Bias Variance Trade-off

Instructor: Prof. Ganesh Ramakrishnan



Expected loss of a model

@ Say, we are given the training data Tp containing values for x and the target variable is y.
P(x, y) is the joint distribution over x and y. f(x) is our target function (as this function
will be dependent on Tp as well it is more appropriate to call it f{x, Tp)).

@ To find the expected loss of the model over the distribution of the training data, we first
simplify the expected loss expression. For square loss we get,

Ep(xy [(fx // fx) — y)*P(x, y)dxdy
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2
2]P(x y)dxdy

— E(y/x) + E(y/x) = y)*P(x; y)dxdy

fix) — E(y/x))>P(x, y)dxdy + [, [, (E(y/x) = y)? P(x, y)dxdy
2 [ J,(fx) — E(y/x))(E(y/) — )P(X y)dxdy

We will rewrite the 3rd term in the final equation as:
2/, f(x E(y/x))(E(y/x) — y)P(x, y)dxdy
=2 f Ey/x))(J,(E(y/x) — y) P(y|x)dy) P(x) dx

By definition fny(y\x)dy: E(y/x). Therefore the inner integral is 0.

I 4 a4 November 13, 2016
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Finally we get
Ep(x) [(f(x = [ J, () = E(y/x))>P(x, y)dxdy + [, [, (E(y/x) = y)* P(x, y) dxdy

The 2nd term is independent of f. Can you think of a situation when the 2nd term will be 07
Q: For what value of fwill this loss be minimized?
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The minimum loss will be achieved when f(x) = E(y/x)

Now let us find the expected loss over the training data. Using our previous analysis we see
that only the (Ax) — E(y/x))? component can be minimized. (Remember fis dependent on

Tp)
(Simple Q: Why is integrating over Tp and (x, y) the same)

f—,— X TD (y/x))2P( TD)C/TD

= Er,[(flx, Tp) — Erp[flx, TD)] + Exy[flx, TD)] — E(y/x))?]
= E,[(flx, Tp) — E7,[fix, TD)])? + (E,[flx, TD)] — E(y/x))?
—2(Er,[fix, TD)] — Ely/x))(fix, Tp) — E,[fix; TD)))]

The last term vanishes (WHY?) and we get:
Erp[(fx, Tp) — Erp[fix, TD)])?] + (Er,[flx, TD)] — E(y/x))?

November 13, 2016
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Bias and Variance

Ero[(fix, Tp) — ETp[fix, TD)])?] + (E7p[fix, TD)] — E(y/x))?
= Variance + Bias?

Finally we say the expected loss of the model is:

Variance + Bias®> + Noise

The noise in the measurement can cause errors in prediction. That is depicted by the third
term.
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Interpret with example - Linear Regression

If we were to take the linear regression with a low degree polynomial, we are introducing a bias
that the dependency of the predicted variable is simple.

Similarly when we add a regularizer term, we are implicitly biased towards weights that are not
big.

By being biased towards a smaller class of models the predicted values will have smaller
variation when trained over different samples (Low Variance) and may fit poorly as compared
to a complex model (High Bias).

The low variance makes model generalizable over the samples.
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Interpret with example - Linear Regression

Suppose we complicate our regression model by increasing degree of the polynomial used.

As we have seen before this will lead to complex curves and will tend to pass through all points.
Here we have put fewer restrictions on our model and hence have less bias.

For a given training data our prediction could be very good (Low Bias).

Although if we consider different Training Sets are models could vary wildly (High Variance).
This reduces the generalizability of the model.
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Conclusion

This is the Bias-Variance Tradeoff in action. Simple models usually have low variance but high
bias and complex models usually have high variance and low bias.
Food for Thought: So how should we choose our model?

Also whenever you learn about a new algorithm it would be a good exercise to see how the
tradeoff works there.

For example, think how the tradeoff manifests itself in the K Nearest Neighbor algorithm.
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Support Vector Machines
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@ Perceptron does not find the best seperating hyperplane, it finds any seperating
hyperplane.

@ In case the initial w does not classify all the examples, the seperating hyperplane
corresponding to the final w* will often pass through an example.

@ The seperating hyperplane does not provide enough breathing space — this is what SVMs
address!
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$=(x)

\;‘n:li;gin = nwn

wlo(x) +b>+1 fory = +1
wlo(x) +b< —1 fory = —1

$1(x) w,¢ € IR™

There is large margin to seperate the +ve and -ve examples
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Overlapping examples

$=(x)

slackness
NS
% -

$:(¥)

When the examples are not linearly seperable,
we need to consider the slackness §; of the
examples x; (how far a misclassified point is
from the seperating hyperplane, always +ve):
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Overlapping examples

\sl{aé’i'(ness
A -
PR When the examples are not linearly seperable,
e we need to consider the slackness &; of the
examples x; (how far a misclassified point is
from the seperating hyperplane, always +ve):
w d(xi) + b > +1 =& (for yi = +1)

b1(x) WT¢(X1) +b< —1+¢& (for yi= —1)

LR CON B

Multiplying y; on both sides, we get:
yilw é(xi) +b) > 1—&, Vi=1,...,n

November 13, 2016 24 / 26



Maximize the margin

@ We maximize the margin given by (¢(x") — ¢(x

@ Here, x* and x~ lie on boundaries of the margin.



Maximize the margin

e We maximize the margin given by (¢(x") — ¢(x*))T[|-|%H]
@ Here, x* and x~ lie on boundaries of the margin.

o Verify that w is perpendicular to the seperating surface:
at the seperating surface, the dot product of w and ¢(x) is 0 (with b captured), which is
only possible if w and ¢(x) are perpendicular.

@ We project the vectors ¢(x") and ¢(x~) on w, and normalize by w as we are only
concerned with the direction of w and not its magnitude.
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Simplifying the margin expression

o Maximize the margin (¢(x") — ¢(x7))T[ ]

At xT: yt =1, € =0 hence, (w'¢ X+)—|- = —®
At x: y~ =1, & =0 hence, —(w' ¢(x") + b) —@
Adding @ to @

W (p(xT) = p(x7)) =2

o Thus, the margin expression to maximize is: ”%”
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