Lecture 25: Bagging and Boosting with Decision Trees, Bias-Variance Tradeoff, Feature Selection
 Instructor: Prof. Ganesh Ramakrishnan

General Feature Selection based on Gain

- S is a sample of training examples, $p_{C_{i}}$ is proportion of examples with class C_{i} in S
- Entropy measures impurity of $S: H(S) \equiv \sum_{i=1}^{K}-p_{C_{i}} \log _{2} p_{C_{i}}$
- Selecting R best attributes: Let $\mathcal{R}=\emptyset$
- $\operatorname{Gain}\left(S, \phi_{i}\right)=$ expected Gain due to choice of ϕ_{i} Eg: Gain based on entropy $\operatorname{Gain}\left(S, \phi_{i}\right) \equiv H(S)-\sum_{v \in \operatorname{Values}\left(\phi_{i}\right)} \frac{\left|S_{v}\right|}{|S|} H\left(S_{v}\right)$
Do:
(1) $\phi^{*}=\underset{\phi, \notin \mathcal{R}}{\operatorname{argmax}} \operatorname{Gain}\left(S, \phi_{i}\right)$
(2) $\mathcal{R}=\mathcal{R} \cup\left\{\phi^{*}\right\}$

Until $|\mathcal{R}|=R$

General Feature Selection based on Gain

- S is a sample of training examples, $p_{C_{i}}$ is proportion of examples with class C_{i} in S
- Entropy measures impurity of $S: H(S) \equiv \sum_{i=1}^{K}-p_{C_{i}} \log _{2} p_{C_{i}}$
- Selecting R best attributes: Let $\mathcal{R}=\emptyset$
- $\operatorname{Gain}\left(S, \phi_{i}\right)=$ expected Gain due to choice of ϕ_{i} Eg: Gain based on entropy $\operatorname{Gain}\left(S, \phi_{i}\right) \equiv H(S)-\sum_{v \in \operatorname{Values}\left(\phi_{i}\right)} \frac{\left|S_{v}\right|}{|S|} H\left(S_{v}\right)$
Do:
(1) $\phi^{*}=\underset{\phi, \notin \mathcal{R}}{\operatorname{argmax}} \operatorname{Gain}\left(S, \phi_{i}\right)$
(2) $\mathcal{R}=\mathcal{R} \cup\left\{\phi^{*}\right\}$

Until $|\mathcal{R}|=R$
Q: What other measures of Gain could you think of?

Supervised Feature Subset Selection (Optional)

- One can also Optimally select subset of features using Iterative Hard Thresholding ${ }^{1}$ for Optimal Feature Selection
- Input: Error function $\mathbf{E}(\mathbf{w})$ with gradient oracle to compute $\nabla \mathbf{E}(\mathbf{w})$ sparsity level s, step-size η :
- $\mathbf{w}^{(0)}=0, t=1$
- while not converged do
(1) $\mathbf{w}^{(t+1)}=P_{s}\left(\mathbf{w}^{(t)}-\eta \nabla_{\mathbf{w}} \mathbf{E}\left(\mathbf{w}^{(t)}\right)\right) / /$ Projection function $P_{s}($.$) picks the highest weighted s$ features as per the update $\mathbf{w}^{(t)}-\eta \nabla_{\mathbf{w}} \mathbf{E}\left(\mathbf{w}^{(t)}\right)$ and sets rest to 0
(2) $t=t+1$
- end while
- Output: $\mathbf{w}^{(t)}$

[^0]Injecting Randomness: Bagging and Ensemble
Main loop:
(1) $\phi_{i} \leftarrow$ "best" decision attribute for next node
(2) Assign ϕ_{i} as decision attribute for node
(3) For each value of ϕ_{i}, create new descendant of node
(3) Sort training examples to leaf nodes

Steps (1) and (4) prohibitive and excessively greedy with large numbers of attributes (1000s) and training examples (100000s). Alternatives?

Injecting Randomness: Bagging and Ensemble

Main loop:
(1) $\phi_{i} \leftarrow$ "best" decision attribute for next node
(2) Assign ϕ_{i} as decision attribute for node
(3) For each value of ϕ_{i}, create new descendant of node
(9) Sort training examples to leaf nodes

Steps (1) and (4) prohibitive and excessively greedy with large numbers of attributes (1000s) and training examples (100000s). Alternatives?

- Bagging $=$ Boostrap aggregating
- Uniformly at random (with replacements), sample subsets $\mathcal{D}_{s} \subseteq \mathcal{D}$ of the training data, $\Phi_{s} \subseteq \Phi$ of the attribute set and construct decision tree T_{s} for each such random subset.
- Random Forest Algorithm:

Injecting Randomness: Bagging and Ensemble

Main loop:
(1) $\phi_{i} \leftarrow$ "best" decision attribute for next node
(2) Assign ϕ_{i} as decision attribute for node
(3) For each value of ϕ_{i}, create new descendant of node
(9) Sort training examples to leaf nodes

Steps (1) and (4) prohibitive and excessively greedy with large numbers of attributes (1000s) and training examples (100000s). Alternatives?

- Bagging $=$ Boostrap aggregating
- Uniformly at random (with replacements), sample subsets $\mathcal{D}_{s} \subseteq \mathcal{D}$ of the training data, $\Phi_{s} \subseteq \Phi$ of the attribute set and construct decision tree T_{s} for each such random subset.
- Random Forest Algorithm: For $s=1$ to B repeat:
(1) Boostrapping: Draw a random sample \mathcal{D}_{s} (with replacement) of size m_{s} from the training data \mathcal{D} of size m
(2) Grow a random decision tree T_{s} to \mathcal{D}_{s} by recursively repeating steps (1)-(5) of decision tree construction algorithm,, with following difference to step (1)

Injecting Randomness: Bagging and Ensemble

Main loop:
(1) $\phi_{i} \leftarrow$ "best" decision attribute for next node
(2) Assign ϕ_{i} as decision attribute for node
(3) For each value of ϕ_{i}, create new descendant of node
(9) Sort training examples to leaf nodes

Steps (1) and (4) prohibitive and excessively greedy with large numbers of attributes (1000s) and training examples (100000s). Alternatives?

- Bagging = Boostrap aggregating
- Uniformly at random (with replacements), sample subsets $\mathcal{D}_{s} \subseteq \mathcal{D}$ of the training data, $\Phi_{s} \subseteq \Phi$ of the attribute set and construct decision tree T_{s} for each such random subset.
- Random Forest Algorithm: For $s=1$ to B repeat:
(1) Boostrapping: Draw a random sample \mathcal{D}_{s} (with replacement) of size m_{s} from the training data \mathcal{D} of size m
(2) Grow a random decision tree T_{s} to \mathcal{D}_{s} by recursively repeating steps (1)-(5) of decision tree construction algorithm,, with following difference to step (1)
(1) $\phi_{i} \leftarrow$ 'best" decision attribute for next node from Φ_{s} where $\Phi_{s} \subseteq \Phi$ is sample of size n_{s}
- Output: Ensemble of Trees $\left\{T_{s}\right\}_{1}^{B}$

Random Forest applied to Query (Test) data

Output of Random forest Algorithm: Ensemble of Weakly Learnt Trees $\left\{T_{s}\right\}_{1}^{B}$

- Consider $\operatorname{Pr}_{t}(c \mid \mathbf{x})$ for each each weakly learnt tree $t \in B$ for each class $c=[1 . . K]$ based on the proportion of training points in class c of the leaf node determined by the path of query point \mathbf{x} on tree t
- Decision for a new test point \mathbf{x} :

[^1]
Random Forest applied to Query (Test) data

Output of Random forest Algorithm: Ensemble of Weakly Learnt Trees $\left\{T_{s}\right\}_{1}^{B}$

- Consider $\operatorname{Pr}_{t}(c \mid \mathbf{x})$ for each each weakly learnt tree $t \in B$ for each class $c=[1 . . K]$ based on the proportion of training points in class c of the leaf node determined by the path of query point \mathbf{x} on tree t
- Decision for a new test point $\mathbf{x}: \operatorname{Pr}(c \mid \mathbf{x})=\frac{1}{|B|} \sum_{t=1}^{B} \operatorname{Pr}_{t}(c \mid \mathbf{x})$
- For m data points, with $|B|=\sqrt{m}$, consistency results have been proved ${ }^{2}$

[^2]
Random Forest: Balancing Bias and Variance

- Decision for a new test point $\mathbf{x}: \operatorname{Pr}(c \mid \mathbf{x})=\frac{1}{|B|} \sum_{t=1}^{B} \operatorname{Pr}_{t}(c \mid \mathbf{x})$
- Each single decision tree, viewed as an estimator of the ideal tree has high variance, with very less bias (assumptions)
- But since the decision trees T_{i} and T_{j} are uncorrelated, when decision is averaged out across them, it tends to

Random Forest: Balancing Bias and Variance

- Decision for a new test point $\mathbf{x}: \operatorname{Pr}(c \mid \mathbf{x})=\frac{1}{|B|} \sum_{t=1}^{B} \operatorname{Pr}_{t}(c \mid \mathbf{x})$
- Each single decision tree, viewed as an estimator of the ideal tree has high variance, with very less bias (assumptions)
- But since the decision trees T_{i} and T_{j} are uncorrelated, when decision is averaged out across them, it tends to
- have low variance
- be very accurate
- not overfit

Bias and Variance

- Bias and Variance are two important properties of a machine learning model.
- They help us measure the accuracy of the model and the dependence between the trained model and the training data set. (Q: Is greater dependence good?)
- Variance of a model is the variance in its prediction when trained over different training data sets. (Is high variance good?)
- Bias of a model is the difference between the expected prediction of the model and the true values which we are trying to predict. (Is low bias good?)
- Eg: For the Multivariate Gaussian, the Maximum Likelihood estimator of its mean is unbiased, while of its covariance estimator is biased

Bias and Variance

- Bias and Variance are two important properties of a machine learning model.
- They help us measure the accuracy of the model and the dependence between the trained model and the training data set. (Q: Is greater dependence good?)
- Variance of a model is the variance in its prediction when trained over different training data sets. (Is high variance good?)
- Bias of a model is the difference between the expected prediction of the model and the true values which we are trying to predict. (Is low bias good?)
- Eg: For the Multivariate Gaussian, the Maximum Likelihood estimator of its mean is unbiased, while of its covariance estimator is biased
- $\mathbf{E}_{\mathcal{N}(\mu, \Sigma)}\left(\hat{\mu}_{\text {mle }}\right)-\mu=0$ (zero bias)
- $\mathbf{E}_{\mathcal{N}(\mu, \Sigma)}\left(\hat{\Sigma}_{\text {mle }}\right)-\Sigma=\frac{1}{n-1} \Sigma$ (non-zero bias)
- One can quantify the trade-off between bias and variance. Eg:
- Expected squared loss error $=$ variance + bias $^{2}+$ noise (see optional slides for details)

Bias and Variance

Figure: The distance of the cluster from the eye represents bias and the spread of the cluster represents variance.
(src: zhangjunhd.github.io/2014/10/01/bias-variance-tradeoff.html)

Weak Models: From Bagging to Boosting

Bagging: Ensemble of Independently Weakly Learnt Models (Eg: Trees $\left\{T_{s}\right\}_{1}^{B}$): $\operatorname{Pr}(c \mid \mathbf{x})=\frac{1}{|B|} \sum_{t=1}^{B} \operatorname{Pr}_{t}(c \mid \mathbf{x})$

Weak Models: From Bagging to Boosting

Bagging: Ensemble of Independently Weakly Learnt Models (Eg: Trees $\left\{T_{s}\right\}_{1}^{B}$): $\operatorname{Pr}(c \mid \mathbf{x})=\frac{1}{|B|} \sum_{t=1}^{B} \operatorname{Pr}_{t}(c \mid \mathbf{x})$

Boosting: Wtd combinations of Iteratively Weakly Learnt Models (Eg: Trees $\left\{\alpha_{t}, T_{t}\right\}_{1}^{B}$):

Weak Models: From Bagging to Boosting

Bagging: Ensemble of Independently Weakly Learnt Models (Eg: Trees $\left\{T_{s}\right\}_{1}^{B}$): $\operatorname{Pr}(c \mid \mathbf{x})=\frac{1}{|B|} \sum_{t=1}^{B} \operatorname{Pr}_{t}(c \mid \mathbf{x})$

Boosting: Wtd combinations of Iteratively Weakly Learnt Models (Eg: Trees $\left\{\alpha_{t}, T_{t}\right\}_{1}^{B}$): $\operatorname{Pr}(c \mid \mathbf{x})=\frac{1}{|B|} \sum_{t=1}^{B} \alpha_{t} \operatorname{Pr}_{t}(c \mid \mathbf{x})$ where $\alpha_{t}=\left(1 / 2 \ln \left(\left(1-e r r_{t}\right) / e r r_{t}\right)\right.$

Adaptive Boosting of Iteratively Learnt Weak Models

Error driven weighted linear combinations of models: $\alpha_{\mathbf{t}}=(1 / 2) \ln \left(\left(1-e r r_{t}\right) / e r r_{t}\right)$

Adaptive Boosting of Iteratively Learnt Weak Models

Error driven weighted linear combinations of models: $\alpha_{\mathbf{t}}=(1 / 2) \ln \left(\left(1-e r r_{t}\right) / \mathrm{err}_{t}\right)$

Reweighting of each data instance $\mathbf{x}^{(i)}$ before learning the next model T_{t} :
$\xi_{i}=\xi_{i} \exp \left(\alpha_{\mathbf{t}} \delta\left(y^{(i)} \neq T_{t}\left(\mathbf{x}^{(i)}\right)\right)\right)$. Note that $e r r_{t}=\frac{\sum_{i=1}^{m} \xi_{i} \delta\left(y^{(i)} \neq T_{t}\left(\mathbf{x}^{(i)}\right)\right)}{\sum_{i=1}^{m} \xi_{i}}$

Adaboost Algorithm

Initialize each instance weight $\xi_{i}=\frac{1}{m}$. For $t=1$ to B do:
(1) Learn the $t^{t h}$ model T_{t} by weighing example $\mathbf{x}^{(i)}$ by ξ_{i}
(2) Compute the corresponding error on the training set $\operatorname{err}_{t}=\frac{\sum_{i=1}^{m} \xi_{i} \delta\left(y^{(i)} \neq T_{t}\left(\mathbf{x}^{(i)}\right)\right)}{\sum_{i=1}^{m} \xi_{i}}$
(3) Compute the error driven weighted linear factor for $T_{t}: \alpha_{\mathbf{t}}=(1 / 2) \ln \left(\left(1-e r r_{t}\right) / e r r_{t}\right)$
(9) Reweigh each data instance $\mathbf{x}^{(i)}$ before learning the next model:

$$
\xi_{i}=\xi_{i} \exp \left(\alpha_{\mathbf{t}} \delta\left(y^{(i)} \neq T_{t}\left(\mathbf{x}^{(i)}\right)\right)\right)
$$

Adaboost Algorithm: Motivation (Tutorial 9)

- Freund \& Schapire, 1995: Converting a "weak" PAC³ learning algorithm that performs just slightly better than random guessing into one with arbitrarily high accuracy.
- Let $C_{t}(\mathbf{x})=\sum_{j=1}^{t} \alpha_{j} T_{j}(\mathbf{x})$ be the boosted linear combination of classifiers until $t^{t h}$ iteration.
- Let the error to be minimized over α_{t} be the sum of its exponential loss on each data point,

$$
\mathbf{E}_{t}=\sum_{i=1}^{m} \delta\left(y^{(i)} \neq \operatorname{sign}\left(C_{t}\left(\mathbf{x}^{(i)}\right)\right)\right) \leq \sum_{i=1}^{m} \exp \left(-y^{(i)} C_{t}\left(\mathbf{x}^{(i)}\right)\right)
$$

- Claim1: The error that is the sum of exponential loss on each data point is an upper bound on the simple sum of training errors on each data point
- Claim2: $\alpha_{\mathbf{t}}=(1 / 2) \ln \left(\left(1-e r r_{t}\right) / e r r_{t}\right)$ actually minimizes this upper bound.
- Claim3: If each classifier is slightly better than random, that is if errt $<1 / K$, Adaboost achieves zero training error exponentially fast

[^3]
Extra Reading: Bias Variance Trade-off Instructor: Prof. Ganesh Ramakrishnan

Expected loss of a model

- Say, we are given the training data T_{D} containing values for x and the target variable is y. $P(x, y)$ is the joint distribution over x and $y . f(x)$ is our target function (as this function will be dependent on T_{D} as well it is more appropriate to call it $f\left(x, T_{D}\right)$).
- To find the expected loss of the model over the distribution of the training data, we first simplify the expected loss expression. For square loss we get,

$$
E_{P(x, y)}\left[(f(x)-y)^{2}\right]=\int_{x} \int_{y}(f(x)-y)^{2} P(x, y) d x d y
$$

$$
\begin{aligned}
& E_{P(x, y)}\left[(f(x)-y)^{2}\right] \\
& =\int_{x} \int_{y}(f(x)-y)^{2} P(x, y) d x d y \\
& =\int_{x} \int_{y}(f(x)-E(y / x)+E(y / x)-y)^{2} P(x, y) d x d y \\
& =\int_{x} \int_{y}(f(x)-E(y / x))^{2} P(x, y) d x d y+\int_{x} \int_{y}(E(y / x)-y)^{2} P(x, y) d x d y \\
& \quad+2 \int_{x} \int_{y}(f(x)-E(y / x))(E(y / x)-y) P(x, y) d x d y
\end{aligned}
$$

We will rewrite the 3rd term in the final equation as:
$2 \int_{x} \int_{y}(f(x)-E(y / x))(E(y / x)-y) P(x, y) d x d y$
$=2 \int_{x}(f(x)-E(y / x))\left(\int_{y}(E(y / x)-y) P(y \mid x) d y\right) P(x) d x$
By definition $\int_{y} y P(y \mid x) d y=E(y / x)$. Therefore the inner integral is 0 .

Finally we get,
$E_{P(x, y)}\left[(f(x)-y)^{2}\right]=\int_{x} \int_{y}(f(x)-E(y / x))^{2} P(x, y) d x d y+\int_{x} \int_{y}(E(y / x)-y)^{2} P(x, y) d x d y$
The 2 nd term is independent of f. Can you think of a situation when the 2 nd term will be 0 ?
Q: For what value of f will this loss be minimized?

The minimum loss will be achieved when $f(x)=E(y / x)$
Now let us find the expected loss over the training data. Using our previous analysis we see that only the $(f(x)-E(y / x))^{2}$ component can be minimized. (Remember f is dependent on T_{D})
(Simple Q: Why is integrating over T_{D} and (x, y) the same)

$$
\begin{aligned}
& \int_{T_{D}}\left(f\left(x, T_{D}\right)-E(y / x)\right)^{2} P\left(T_{D}\right) d T_{D} \\
& =E_{T_{D}}\left[\left(f\left(x, T_{D}\right)-E_{T_{D}}[f(x, T D)]+E_{T_{D}}[f(x, T D)]-E(y / x)\right)^{2}\right] \\
& =E_{T_{D}}\left[\left(f\left(x, T_{D}\right)-E_{T_{D}}[f(x, T D)]\right)^{2}+\left(E_{T_{D}}[f(x, T D)]-E(y / x)\right)^{2}\right. \\
& \left.-2\left(E_{T_{D}}[f(x, T D)]-E(y / x)\right)\left(f\left(x, T_{D}\right)-E_{T_{D}}[f(x, T D)]\right)\right]
\end{aligned}
$$

The last term vanishes (WHY?) and we get:
$E_{T_{D}}\left[\left(f\left(x, T_{D}\right)-E_{T_{D}}[f(x, T D)]\right)^{2}\right]+\left(E_{T_{D}}[f(x, T D)]-E(y / x)\right)^{2}$

Bias and Variance

$$
\begin{aligned}
& E_{T_{D}}\left[\left(f\left(x, T_{D}\right)-E_{T_{D}}[f(x, T D)]\right)^{2}\right]+\left(E_{T_{D}}[f(x, T D)]-E(y / x)\right)^{2} \\
& =\text { Variance }+ \text { Bias }^{2} \\
& \text { Finally we say the expected loss of the model is: } \\
& \text { Variance }+ \text { Bias }^{2}+\text { Noise }
\end{aligned}
$$

The noise in the measurement can cause errors in prediction. That is depicted by the third term.

Interpret with example - Linear Regression

If we were to take the linear regression with a low degree polynomial, we are introducing a bias that the dependency of the predicted variable is simple.
Similarly when we add a regularizer term, we are implicitly biased towards weights that are not big.
By being biased towards a smaller class of models the predicted values will have smaller variation when trained over different samples (Low Variance) and may fit poorly as compared to a complex model (High Bias).
The low variance makes model generalizable over the samples.

Interpret with example - Linear Regression

Suppose we complicate our regression model by increasing degree of the polynomial used. As we have seen before this will lead to complex curves and will tend to pass through all points. Here we have put fewer restrictions on our model and hence have less bias. For a given training data our prediction could be very good (Low Bias). Although if we consider different Training Sets are models could vary wildly (High Variance). This reduces the generalizability of the model.

Conclusion

This is the Bias-Variance Tradeoff in action. Simple models usually have low variance but high bias and complex models usually have high variance and low bias.
Food for Thought: So how should we choose our model?
Also whenever you learn about a new algorithm it would be a good exercise to see how the tradeoff works there.
For example, think how the tradeoff manifests itself in the K Nearest Neighbor algorithm.

Support Vector Machines

- Perceptron does not find the best seperating hyperplane, it finds any seperating hyperplane.
- In case the initial w does not classify all the examples, the seperating hyperplane corresponding to the final w^{*} will often pass through an example.
- The seperating hyperplane does not provide enough breathing space - this is what SVMs address!

$$
\begin{aligned}
& w^{\top} \phi(x)+b \geq+1 \text { for } y=+1 \\
& w^{\top} \phi(x)+b \leq-1 \text { for } y=-1 \\
& w, \phi \in \mathbb{R}^{m}
\end{aligned}
$$

There is large margin to seperate the +ve and -ve examples

Overlapping examples

When the examples are not linearly seperable, we need to consider the slackness ξ_{i} of the examples x_{i} (how far a misclassified point is from the seperating hyperplane, always +ve):

Overlapping examples

When the examples are not linearly seperable, we need to consider the slackness ξ_{i} of the examples x_{i} (how far a misclassified point is from the seperating hyperplane, always +ve):

$$
\begin{aligned}
& w^{\top} \phi\left(x_{i}\right)+b \geq+1-\xi_{i}\left(\text { for } y_{i}=+1\right) \\
& w^{\top} \phi\left(x_{i}\right)+b \leq-1+\xi_{i}\left(\text { for } y_{i}=-1\right)
\end{aligned}
$$

Multiplying y_{i} on both sides, we get:

$$
y_{i}\left(w^{\top} \phi\left(x_{i}\right)+b\right) \geq 1-\xi_{i}, \forall i=1, \ldots, n
$$

Maximize the margin

- We maximize the margin given by $\left(\phi\left(x^{+}\right)-\phi\left(x^{-}\right)\right)^{\top}\left[\frac{w}{\|w\|}\right]$
- Here, x^{+}and x^{-}lie on boundaries of the margin.

Maximize the margin

- We maximize the margin given by $\left(\phi\left(x^{+}\right)-\phi\left(x^{-}\right)\right)^{\top}\left[\frac{w}{\|w\|}\right]$
- Here, x^{+}and x^{-}lie on boundaries of the margin.
- Verify that w is perpendicular to the seperating surface:
at the seperating surface, the dot product of w and $\phi(x)$ is 0 (with b captured), which is only possible if w and $\phi(x)$ are perpendicular.
- We project the vectors $\phi\left(x^{+}\right)$and $\phi\left(x^{-}\right)$on w, and normalize by w as we are only concerned with the direction of w and not its magnitude.

Simplifying the margin expression

- Maximize the margin $\left(\phi\left(x^{+}\right)-\phi\left(x^{-}\right)\right)^{\top}\left[\frac{w}{\|w\|}\right]$
- At $x^{+}: y^{+}=1, \xi^{+}=0$ hence, $\left(w^{\top} \phi\left(x^{+}\right)+b\right)=1$-1

At $x^{-}: y^{-}=1, \xi^{-}=0$ hence, $-\left(w^{\top} \phi\left(x^{-}\right)+b\right)=1$-2

- Adding (2) to (1),
$w^{\top}\left(\phi\left(x^{+}\right)-\phi\left(x^{-}\right)\right)=2$
- Thus, the margin expression to maximize is: $\frac{2}{\|w\|}$

[^0]: ${ }^{1}$ https://arxiv.org/pdf/1410.5137v2.pdf

[^1]: ${ }^{2}$ Brieman et. al. http://www.jmlr.org/papers/volume9/biau08a/biau08a.pdf and https://www.microsoft.com/en-us/research/publication/ decision-forests-a-unified-framework-for-classification-regression-density-estimation-manifol for several other results on random forests

[^2]: ${ }^{2}$ Brieman et. al. http://www.jmlr.org/papers/volume9/biau08a/biau08a.pdf and https://www.microsoft.com/en-us/research/publication/
 decision-forests-a-unified-framework-for-classification-regression-density-estimation-manifol for several other results on random forests

[^3]: ${ }^{3}$ http://web.cs.iastate.edu/~honavar/pac.pdf

