Lecture 26: Support Vector Classification, Unsupervised Learning Instructor: Prof. Ganesh Ramakrishnan

Support Vector Classification

- Perceptron does not find the best seperating hyperplane, it finds any seperating hyperplane.
- In case the initial \mathbf{w} does not classify all the examples, the seperating hyperplane corresponding to the final \mathbf{w}^{*} will often pass through an example.
- The seperating hyperplane does not provide enough breathing space - this is what SVMs address and we already saw that for regression!
- Perceptron does not find the best seperating hyperplane, it finds any seperating hyperplane.
- In case the initial \mathbf{w} does not classify all the examples, the seperating hyperplane corresponding to the final \mathbf{w}^{*} will often pass through an example.
- The seperating hyperplane does not provide enough breathing space - this is what SVMs address and we already saw that for regression!
- We now quickly do the same for classification (is asymmetric in pto

Support Vector Classification: Separable Case

$$
\begin{aligned}
& \mathbf{w}^{\top} \phi(\mathbf{x})+b \geq+1 \text { for } y=+1 \\
& \mathbf{w}^{\top} \phi(\mathbf{x})+b \leq-1 \text { for } y=-1 \\
& \mathbf{w}, \phi \in \mathbb{R}^{m}
\end{aligned}
$$

There is large margin to seperate the + ve and -ve examples

Support Vector Classification: Non-separable Case

When the examples are not linearly separable, we need to consider the slackness ξ_{i} (always +ve) of each example $\mathbf{x}^{(i)}$ (how far a misclassified point is from the separating hyperplane):

$$
\begin{aligned}
& w^{\top} \phi\left(x^{\prime}\right)+b \geqslant 1-\xi_{i} \forall y^{i}=+1 \\
& w^{\top} \phi\left(x^{i}\right)+b \leq-1-\xi_{i} \forall y^{i}=-1
\end{aligned}
$$

Support Vector Classification: Non-separable Case

When the examples are not linearly seperable, we need to consider the slackness ξ_{i} (always +ve) of each example $\mathbf{x}^{(i)}$ (how far a misclassified point is from the seperating hyperplane):

$$
\begin{array}{r}
\text { Multiplying } \underline{y}^{(i)} \text { on both sides, we get: } \\
y^{(i)}\left(\mathbf{w}^{\top} \phi\left(\mathbf{x}^{(i)}\right)+b\right) \geq 1-\xi_{i}, \forall i=1, \ldots, n
\end{array}
$$

Maximize the margin

- We maximize the margin $\left(\phi\left(\mathbf{x}^{+}\right)-\phi\left(\mathbf{x}^{-}\right)\right)^{\top}\left[\frac{\mathbf{w}}{\|\mathbf{w}\|}\right]=\frac{2}{\|\mathbf{w}\|}$
- Here, \mathbf{x}^{+}and \mathbf{x}^{-}lie on boundaries of the margin.
- Recall that \mathbf{w} is perpendicular to the separating surface
- We project the vectors $\phi\left(\mathrm{x}^{+}\right)$and $\phi\left(\mathrm{x}^{-}\right)$on w , and normalize by w as we are only concerned with the direction of \mathbf{w} and not its magnitude
$\left.\begin{array}{l}\text { (1) } \omega^{\top} \phi\left(x^{+}\right)+b=1 \\ \text { (2) } \omega^{\top} \phi(x)+b=-1\end{array}\right\}$

$$
\begin{aligned}
& \Rightarrow-(1) \\
& \Rightarrow \omega^{\top}\left(\phi\left(x^{+}\right)-\phi(x)\right)=2 \\
& \Rightarrow\left(\phi\left(x^{+}\right)-\phi\left(x^{-}\right)\right)^{\top} \frac{D}{\left.\| \omega_{0}\right)^{-}}=\frac{2}{n i n d)}
\end{aligned}
$$

Simplifying the margin expression

- Maximize the margin $\left(\phi\left(\mathbf{x}^{+}\right)-\phi\left(\mathbf{x}^{-}\right)\right)^{\top}[\| \mathbf{w}]$
- At $\mathbf{x}^{+}: y^{+}=1, \xi^{+}=0$ hence, $\left(\mathbf{w}^{\top} \phi\left(\mathbf{x}^{+}\right)+b\right)=1$-(1) At $\mathbf{x}^{-}: y^{-}=1, \xi^{-}=0$ hence, $-\left(\mathbf{w}^{\top} \phi\left(\mathbf{x}^{-}\right)+b\right)=1$-(2)

Simplifying the margin expression

- Maximize the margin $\left(\phi\left(\mathbf{x}^{+}\right)-\phi\left(\mathbf{x}^{-}\right)\right)^{\top}[\|\mathbf{w}\|$
- At $\mathbf{x}^{+}: y^{+}=1, \xi^{+}=0$ hence, $\left(\mathbf{w}^{\top} \phi\left(\mathbf{x}^{+}\right)+b\right)=1$-(1) At $\mathbf{x}^{-}: y^{-}=1, \xi^{-}=0$ hence, $-\left(\mathbf{w}^{\top} \phi\left(\mathbf{x}^{-}\right)+b\right)=1$-(2)
- Adding (2) to (1),
$\mathbf{w}^{\top}\left(\phi\left(\mathbf{x}^{+}\right)-\phi\left(\mathbf{x}^{-}\right)\right)=2$
- Thus, the margin expression to maximize is:

Formulating the objective

- Problem at hand: Find \mathbf{w}^{*}, b^{*} that maximize the margin.
- $\left(\mathbf{w}^{*}, b^{*}\right)=\arg \max _{\mathbf{w}, b} \frac{2}{\|\mathbf{w}\|}$

(a) $\xi_{i} \leq \theta$
(b) Add -C $\sum \xi_{i}$ to objective
(c) Add -C $\sum \xi_{i}^{2}$ to objective

Formulating the objective

- Problem at hand: Find \mathbf{w}^{*}, b^{*} that maximize the margin.
- $\left(\mathbf{w}^{*}, b^{*}\right)=\arg \max _{\mathbf{w}, b} \frac{2}{\|\mathbf{w}\|}$
s.t. $y^{(i)}\left(\mathbf{w}^{\top} \phi\left(\mathbf{x}^{(i)}\right)+b\right) \geq 1-\xi_{i}$ and \mathcal{G} \& minimize $\sum \xi_{i}$ $\xi_{i} \geq 0, \forall i=1, \ldots, n$
- However, as $\xi_{i} \rightarrow \infty, 1-\xi_{i} \rightarrow-\infty$
- Thus, with arbitrarily large values of ξ_{i}, the constraints become easily satisfiable for any \mathbf{w}, which defeats the purpose.
- Hence, we also want to minimize the ξ_{i} 's. E.g., minimize $\sum \xi_{i}$

Objective

- $\left(\mathbf{w}^{*}, b^{*}, \xi_{i}^{*}\right)=\underset{\mathbf{w}, b, \xi_{i}}{\arg \min _{2}}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i}$
s.t. $y^{(i)}\left(\mathbf{w}^{\top} \phi\left(\mathbf{x}^{(i)}\right)+b\right) \geq 1-\xi_{i}$ and
$\xi_{i} \geq 0, \forall i=1, \ldots, n$
- Instead of maximizing $\frac{2}{\|\mathrm{w}\|}$, minimize $\frac{1}{2}\|\mathrm{w}\|^{2}$ $\left(\frac{1}{2}\|\mathrm{w}\|^{2}\right.$ is monotonically decreasing with respect to $\left.\frac{2}{\|\mathrm{w}\|}\right)$
- C determines the trade-off between the error $\sum \xi_{i}$ and the margin $\frac{2}{\|\mathrm{w}\|}$

Support Vector Machines

Dual Objective

2 Approaches to Showing Kernelized Form for Dual

$$
\begin{aligned}
& \text { Banking on }\|\omega\|_{2}^{2}=\langle\omega, \omega\rangle \quad[\text { Not possible for } \\
& L_{1} \text { norm } \| \omega \bar{~}
\end{aligned}
$$

(1) Approach 1: The Reproducing Kernel Hilbert Space and Representer theorem (Generalized from derivation of Kernel Logistic Regression, Tutorial 7, Problem 3) See http://qwone.com/~jason/writing/kernel.pdf for list of kernelized objectives
(2) Approach 2: Derive using First principles (provided for completeness in Tutorial 9)

Approach 1: Special case of Representer Theorem \& Reproducing Kernel Hilbert Space (RKHS)
(1) Generalized from derivation of Kernel Logistic Regression, Tutorial 7, Problem 3. See http://qwone.com/~jason/writing/kernel.pdf for list of kernelized objectives
(2) Let \mathcal{X} be the space of examples such that $\mathcal{D}=\left\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \mathbf{x}^{(m)}\right\} \subseteq \mathcal{X}$ and for any $\mathrm{x} \in \overline{\mathcal{X}}, \underline{K(., \mathrm{x}): \mathcal{X} \rightarrow \Re \rightarrow \text { Can also view it as } K_{x}(:): X \rightarrow \mathbb{R}, \mathcal{X}}$
3 (Optional) $)^{1}$ The solution $f^{*} \in \mathcal{H}$ (Hilbert space) to the following problem

$$
f \in\left\{\omega_{2} \phi(x)+b\right\}
$$

$$
\begin{aligned}
& \text { ion } f^{*} \in \mathcal{H} \text { (Hilbert space) to the following problem space where } \\
& f^{*}=\underset{f \in \mathcal{H}}{\operatorname{argmin}} \sum_{i=1}^{m} \underbrace{\mathbf{E}\left(x^{i}, y^{i}\right) \xrightarrow{\left.f\left(\mathbf{x}^{(i)}\right), y^{(i)}\right)+\Omega\left(\|f\|_{K}\right)} \quad\|f\|^{2}=\langle f, f\rangle}_{\text {Crosse at it as a spat }} \text { Regulanzer }
\end{aligned}
$$

 increasing function of $\|f\|_{K^{\cdot}} \mathcal{H}$ is the Hilbert space and $K(., \mathbf{x}): \mathcal{X} \rightarrow \Re$ is called the Reproducing (RKHS) Kernel
${ }^{1}$ Proof provided in optional slide deck at the end
$\Omega(\|f\|)$ can be measured through
params such as ω

Intuition about "Reproducing" kernel

$$
\begin{aligned}
& \phi_{k}(x)=\left[k\left(x, x^{\prime}\right), k\left(x, x^{2}\right) \cdots k\left(x, x^{m}\right)\right] \\
& \left\langle\phi_{k}(x) \phi_{k}(y)\right)=k(x, y)
\end{aligned}
$$

Approach 1: Special case of Representer Theorem \& Reproducing Kernel Hilbert Space (RKHS)
(1) (Optional) The solution $f^{*} \in \mathcal{H}$ (Hilbert space) to the following problem
can be always written as $f^{*}(\mathbf{x})=\sum_{i=1}^{m} \alpha_{i} K\left(\mathbf{x}, \mathbf{x}^{(i)}\right)$, provided $\Omega\left(\|f\|_{K}\right)$ is a \ldots
(2) More specifically, if $f(\mathrm{x})=\mathrm{w}^{T} \phi(\mathrm{x})+b$ and $K\left(\mathrm{x}^{\prime}, \mathrm{x}\right)=\phi^{T}(\mathrm{x}) \phi\left(\mathrm{x}^{\prime}\right)$ then the solution $\mathrm{w}^{*} \in \Re^{n}$ to the following problem Can I eliminate siC $b \in \mathbb{R}$

$$
f^{*}=\underset{f \in \mathcal{H}}{\operatorname{argmin}} \sum_{i=1}^{m} \mathbf{E}\left(f\left(\mathbf{x}^{(i)}\right), y^{(i)}\right)+\Omega\left(\|f\|_{K}\right)
$$

$$
\left(\mathbf{w}^{*}, b^{*}\right)=\underset{\mathbf{w}, b}{\operatorname{argmin}} \sum_{i=1}^{m} \overparen{\mathbf{E}\left(f\left(\mathbf{x}^{(i)}\right), y^{(i)}\right)}+\widetilde{\Omega\left(\|\mathbf{w}\|_{2}\right)}
$$

can be always written as $\phi^{T}(\mathbf{x}) \mathbf{w}^{*}+b=\sum_{i=1}^{m} \alpha_{i} K\left(\mathbf{x}, \mathbf{x}^{(i)}\right)$, provided $\Omega\left(\|\mathbf{w}\|_{2}\right)$ is a monotonically increasing function of $\|\mathrm{w}\|_{2} . \Re^{n+1}$ is the Hilbert space and $K(., \mathbf{x}): \mathcal{X} \rightarrow \Re$ is the Reproducing (RKHS) Kernel (b could

The Representer Theorem and SVC
(1) The SVC Objective

$$
\begin{aligned}
& \qquad\left(\mathbf{w}^{*}, b^{*}, \xi_{i}^{*}\right)=\underset{\mathbf{w}, b, \xi_{i}}{\arg \min _{i=1} C \sum_{i}^{m} \xi_{i}+\frac{1}{2}\|\mathbf{w}\|^{2}} \begin{array}{l}
\because y^{i}\left(w^{\wedge} \phi\left(x^{i}\right)+b\right)+1 \leq \xi_{i} \\
\text { st. } \max \left(1-y^{(i)}\left(\mathbf{w}^{\top} \phi\left(\mathbf{x}^{(i)}\right)+b\right), 0\right)=\xi_{i} \\
\text { That is. }
\end{array} \quad 0 \leq \xi_{i}
\end{aligned}
$$

(3) That is,

$$
\left(\mathbf{w}^{*}, b^{*}, \xi_{i}^{*}\right)=\arg \min _{\mathbf{w}, b, \xi_{i}} C \sum_{i=1}^{m} \underbrace{\max \left(1-y^{(i)}\left(\mathbf{w}^{\top} \phi\left(\mathbf{x}^{(i)}\right)+b\right)\right.}_{\text {Hinge } 10 \delta 5}, 0)+\frac{1}{2}\|\mathbf{w}\|^{2} \underbrace{14 / 28}_{\text {October 27, } 2016}
$$

$$
\begin{aligned}
& \text { Can be rewritten as } \\
& \begin{array}{l}
\left.\begin{array}{l}
\text { set. } y^{(i)}\left(\mathbf{w}^{\top} \phi\left(\mathbf{x}^{(i)}\right)+b\right) \geq 1-\xi_{i} \\
\xi_{i} \geq 0, \forall i=1, \ldots, m
\end{array}\right\} \rightarrow \text { Cant we get into } \sum_{i} \quad \underset{i}{i} E\left(f\left(\pi^{i}\right), y^{i}\right)
\end{array}
\end{aligned}
$$

The Representer Theorem and SVC (contd.)

(1) If $f(\mathbf{x})=\mathbf{w}^{\top} \phi(\mathbf{x})+b$ and $K\left(\mathbf{x}^{\prime}, \mathbf{x}\right)=\phi^{T}(\mathbf{x}) \phi\left(\mathbf{x}^{\prime}\right)$ and given the SVC objective

$$
\left(\mathbf{w}^{*}, b^{*}, \xi_{i}^{*}\right)=\underset{\mathbf{w}, b, \xi_{i}}{\arg \min _{i=1} C} \sum_{i}^{m} \max \left(1-y^{(i)}\left(\mathbf{w}^{\top} \phi\left(\mathbf{x}^{(i)}\right)+b\right), 0\right)+\frac{1}{2}\|\mathbf{w}\|^{2}
$$

(2) setting $\mathbf{E}\left(f\left(\mathbf{x}^{(i)}\right), y^{(i)}\right)=C \max \left(1-y^{(i)}\left(\mathbf{w}^{\top} \phi\left(\mathbf{x}^{(i)}\right)+b\right), 0\right)$ and $\Omega\left(\|\mathbf{w}\|_{\mathbf{2}}=\frac{1}{2}\|\mathbf{w}\|_{\mathbf{2}}^{2}\right.$
we can apply the Representer theorem to SVC, so that $\phi^{T}(\mathbf{x}) \mathbf{w}^{*}+b=\sum_{i=1}^{m} \alpha_{i} K\left(\mathbf{x}, \mathbf{x}^{(i)}\right)$

Approach 2: Derivation using First principles

Derivation similar to that for Support Vector Regression, and provided for completeness in extra slide deck as well as in Tutorial 9

- The dual optimization problem becomes:
st.

$$
\alpha_{i} \in[0, C], \forall i \text { and }
$$

$$
\underbrace{\sum_{i} \alpha_{i} y^{(i)}}=0
$$

$$
\begin{aligned}
& \max _{\alpha}-\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)+\sum_{i} \alpha_{i} \\
& \text { Recall for SUR Forsve was } \frac{\sum\left(\alpha_{i}, \alpha_{i}\right.}{i} \\
& \left(\alpha_{i}-\alpha_{i}^{*}\right)\left(\alpha_{j}-\alpha_{j}^{*}\right) \text { is now } \begin{array}{c}
\text { simply } \alpha_{i} \alpha_{j}
\end{array}
\end{aligned}
$$

Representer Theorem and RKHS Dual Objective
 (Opthonal)

The main idea

We first recap the main optimization problem

$$
\begin{equation*}
E(\mathbf{w})=-\left[\frac{1}{m} \sum_{i=1}^{m}\left(y^{(i)} \mathbf{w}^{T} \phi\left(\mathbf{x}^{(i)}\right)-\log \left(1+\exp \left(\mathbf{w}^{T} \phi\left(\mathbf{x}^{(i)}\right)\right)\right)\right)\right]+\frac{\lambda}{2 m}\|\mathbf{w}\|^{2} \tag{1}
\end{equation*}
$$

and an expression for \mathbf{w} at optimality

$$
\begin{equation*}
\mathbf{w}=\frac{1}{\lambda}\left[\sum_{i=1}^{m}\left(y^{(i)}-f_{\mathbf{w}}\left(\mathbf{x}^{(i)}\right)\right) \phi\left(\mathbf{x}^{(i)}\right)\right] \tag{2}
\end{equation*}
$$

To completely prove this specific case of KLR, let \mathcal{X} be the space of examples such that $\left\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \mathbf{x}^{(m)}\right\} \subseteq \mathcal{X}$ and for any $\mathbf{x} \in \mathcal{X}, K(., \mathbf{x}): \mathcal{X} \rightarrow \Re$ be a function such that $K\left(\mathbf{x}^{\prime}, \mathbf{x}\right)=\phi^{T}(\mathbf{x}) \phi\left(\mathbf{x}^{\prime}\right)$. Recall that $\phi(\mathbf{x}) \in \Re^{n}$ and

$$
f_{\mathrm{w}}(\mathbf{x})=p(Y=1 \mid \phi(\mathbf{x}))=\frac{1}{1+\exp \left(-\mathbf{w}^{\mathbf{T}} \phi(\mathrm{x})\right)}
$$

The Reproducing Kernel Hilbert Space (RKHS)

Consider the set of functions $\mathcal{K}=\{K(., \mathbf{x}) \mid \mathbf{x} \in \mathcal{X}\}$ and let \mathcal{H} be the set of all functions that are finite linear combinations of functions in \mathcal{K}. That is, any function $h \in \mathcal{H}$ can be written as $\mathbf{h}()=.\sum_{t=1}^{T} \alpha_{t} K\left(., \mathbf{x}_{t}\right)$ for some T and $\mathbf{x}_{t} \in \mathcal{X}, \alpha_{t} \in \Re$. One can easily verify that \mathcal{H} is a vector space 2
Note that, in the special case when $f\left(\mathbf{x}^{\prime}\right)=K\left(\mathbf{x}^{\prime}, \mathbf{x}\right)$, then $T=m$ and

$$
f\left(\mathrm{x}^{\prime}\right)=K\left(\mathrm{x}^{\prime}, \mathbf{x}\right)=\sum_{i=1}^{n} \phi_{i}\left(\mathbf{x}^{\prime}\right) K\left(\mathbf{e}_{i}, \mathbf{x}\right)
$$

where \mathbf{e}_{i} is such that $\phi\left(\mathbf{e}_{i}\right)=\mathbf{u}_{i} \in \Re^{n}$, the unit vector along the $i^{t h}$ direction.
Also, by the same token, if $\mathbf{w} \in \Re^{n}$ is in the search space of the regularized cross-entropy loss function (??), then

$$
\phi^{\mathbf{T}}\left(\mathrm{x}^{\prime}\right) \mathrm{w}=\sum_{i=1}^{n} w_{i} K\left(\mathbf{e}_{i}, \mathbf{x}\right)
$$

Thus, the solution to (??) is an $h \in \mathcal{H}$.

Inner Product over RKHS H

For any $g()=.\sum_{t=1}^{S} \beta_{s} K\left(., \mathbf{x}_{s}^{\prime}\right) \in \mathcal{H}$ and $h()=.\sum_{t=1}^{T} \alpha_{t} K\left(., \mathbf{x}_{t}\right) \in \mathcal{H}$, define the inner product ${ }^{3}$

$$
\begin{equation*}
\langle h, g\rangle=\sum_{s=1}^{S} \beta_{s} \sum_{t=1}^{T} \alpha_{t} K\left(\mathbf{x}_{s}^{\prime}, \mathbf{x}_{t}\right) \tag{4}
\end{equation*}
$$

Further simplifying (4),

$$
\begin{equation*}
\langle h, g\rangle=\sum_{s=1}^{S} \beta_{s} \sum_{t=1}^{T} \alpha_{t} K\left(\mathbf{x}_{s}^{\prime}, \mathbf{x}_{t}\right)=\sum_{s=1}^{S} \beta_{s} f\left(\mathbf{x}_{s}\right) \tag{5}
\end{equation*}
$$

One immediately observes that in the special case that $g()=K(., \mathbf{x})$,

$$
\begin{equation*}
\langle h, K(., \mathbf{x})\rangle=h(\mathbf{x}) \tag{6}
\end{equation*}
$$

[^0]
Orthogonal Decomposition

Since $\left\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \mathbf{x}^{(m)}\right\} \subseteq \mathcal{X}$ and $\mathcal{K}=\{K(., \mathbf{x}) \mid \mathbf{x} \in \mathcal{X}\}$ with \mathcal{H} being the set of all finite linear combinations of function in \mathcal{K}, we also have that

$$
\text { lin_span }\left\{K\left(., \mathbf{x}^{(1)}\right), K\left(. \mathbf{x}^{(2)}\right), \ldots, K\left(., \mathbf{x}^{(m)}\right)\right\} \subseteq \mathcal{H}
$$

Thus, we can use orthogonal projection to decompose any $h \in \mathcal{H}$ into a sum of two functions, one lying in lin_span $\left\{K\left(., \mathbf{x}^{(1)}\right), K\left(. \mathbf{x}^{(2)}\right), \ldots, K\left(., \mathbf{x}^{(m)}\right)\right\}$, and the other lying in the orthogonal complement:

$$
\begin{equation*}
h=h^{\|}+h^{\perp}=\sum_{i=1}^{m} \alpha_{i} K\left(., \mathbf{x}^{(i)}\right)+h^{\perp} \tag{7}
\end{equation*}
$$

where $\left\langle K\left(., \mathrm{x}^{(i)}\right), h^{\perp}\right\rangle=0$, for each $i=[1 . . m]$.
For a specific training point $\mathbf{x}^{(j)}$, substituting from (7) into (6) for any $h \in \mathcal{H}$, using the fact that $\left\langle K\left(., \mathbf{x}^{(i)}\right), h^{\perp}\right\rangle=0$

$$
h\left(\mathbf{x}^{(j)}\right)=\left\langle\sum^{m} \alpha_{i} K\left(., \mathbf{x}^{(i)}\right)+h^{\perp}, K\left(., \mathbf{x}^{(j)}\right)\right\rangle=\sum^{m} \alpha_{i}\left\langle K\left(., \mathbf{x}^{(i)}\right), K\left(., \mathbf{x}^{(j)}\right)\right\rangle=\sum^{m} \alpha_{i} K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)_{a}
$$

Analysis for the Empirical Risk

The Regularized Cross-Entropy Logistic Loss (1), has two parts (after ignoring the common $\frac{1}{m}$ factor), viz., the empirical risk

$$
\begin{equation*}
-\left[\sum_{i=1}^{m}\left(y^{(i)} \mathbf{w}^{T} \phi\left(\mathbf{x}^{(i)}\right)-\log \left(1+\exp \left(\mathbf{w}^{T} \mathbf{x}^{(i)}\right)\right)\right)\right] \tag{9}
\end{equation*}
$$

Since the empirical risk in (9) is only a function of $h\left(\mathrm{x}^{(i)}\right)=\mathrm{w}^{T} \phi\left(\mathrm{x}^{(i)}\right)$ for $i=[1 . . m]$, based on (8) we note that the value of the empirical risk in (9) will therefore be independent of h^{\perp} and therefore one only needs to equivalently solve the following empirical risk by substituting from (8) i.e., $h\left(\mathbf{x}^{(j)}\right)=\sum_{i=1}^{m} \alpha_{i} K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)$:

$$
\left[\sum_{i=1}^{m}\left(\sum_{\mathbf{j}=1}^{\mathrm{m}}-\mathbf{y}^{(\mathbf{i})} \mathbf{K}\left(\mathbf{x}^{(\mathbf{i})}, \mathbf{x}^{(\mathbf{j})}\right) \alpha_{\mathbf{j}}\right)+\log \left(\mathbf{1}+\sum_{\mathbf{j}=1}^{\mathrm{m}} \alpha_{\mathbf{j}} \mathbf{K}\left(\mathbf{x}^{(\mathbf{i})}, \mathbf{x}^{(\mathbf{j})}\right)\right)\right]
$$

Analysis with Regularizer

Consider the regularizer function $\|\mathbf{w}\|_{2}^{2}$ which is a strictly monotonically increasing function of $\|\mathbf{w}\|$. Substituting $\mathbf{w}=\frac{1}{\lambda}\left[\sum_{i=1}^{m}\left(y^{(i)}-f_{\mathbf{w}}\left(\mathbf{x}^{(i)}\right)\right) \phi\left(\mathbf{x}^{(i)}\right)\right]$ from (??), one can view $\Omega(\|h\|)$ as a strictly monotonic function of $\|h\|$.

$$
\Omega(\|h\|)=\Omega\left(\left\|\sum_{i=1}^{m} \alpha_{i} K\left(., \mathbf{x}^{(i)}\right)+h^{\perp}\right\|\right)=\Omega\left(\sqrt{\left\|\sum_{i=1}^{m} \alpha_{i} K\left(., \mathbf{x}^{(i)}\right)\right\|^{2}+\left\|h^{\perp}\right\|^{2}}\right)
$$

and therefore,

$$
\Omega(\|h\|)=\Omega\left(\sqrt{\left\|\sum_{i=1}^{m} \alpha_{i} K\left(., \mathbf{x}^{(i)}\right)\right\|^{2}+\left\|h^{\perp}\right\|^{2}}\right) \geq \Omega\left(\sqrt{\left\|\sum_{i=1}^{m} \alpha_{i} K\left(., \mathbf{x}^{(i)}\right)\right\|^{2}}\right)
$$

That is, setting $h^{\perp}=0$ does not affect the first term of (1) while strictly increasing the second term. That is, any minimizer must have optimal $h^{*}($.$) with h^{\perp}=0$. That is,

Derivation of SVM Dual using First Principles (also included in Tutorial 9) Dual Objective

Dual function

- Let $L^{*}(\alpha, \mu)=\min _{\mathbf{w}, b, \xi} L(\mathbf{w}, b, \xi, \alpha, \mu)$
- By weak duality theorem, we have:
$L^{*}(\alpha, \mu) \leq \min _{\mathbf{w}, b, \xi} \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i}$
s.t. $y^{(i)}\left(\mathbf{w}^{\top} \phi\left(\mathbf{x}^{(i)}\right)+b\right) \geq 1-\xi_{i}$, and
$\xi_{i} \geq 0, \forall i=1, \ldots, n$
- The above is true for any $\alpha_{i} \geq 0$ and $\mu_{i} \geq 0$
- Thus,

$$
\max _{\alpha, \mu} L^{*}(\alpha, \mu) \leq \min _{\mathbf{w}, b, \xi} \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i}
$$

Dual objective

- In case of SVM, we have a strictly convex objective and linear constraints - therefore, strong duality holds:

$$
\max _{\alpha, \mu} L^{*}(\alpha, \mu)=\min _{w, b, \xi} \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i}
$$

- This value is precisely obtained at the $\left(\mathbf{w}^{*}, b^{*}, \xi^{*}, \alpha^{*}, \mu^{*}\right)$ that satisfies the necessary (and sufficient) optimality conditions
- Assuming that the necessary and sufficient conditions (KKT or Karush-Kuhn-Tucker conditions) hold, our objective becomes:

$$
\max _{\alpha, \mu} L^{*}(\alpha, \mu)
$$

- $L(w, b, \xi, \alpha, \mu)=\frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i}+\sum_{i=1}^{n} \alpha_{i}\left(1-\xi_{i}-y^{(i)}\left(\mathbf{w}^{\top} \phi\left(\mathbf{x}^{(i)}\right)+b\right)\right)-\sum_{i=1}^{n} \mu_{i} \xi_{i}$
- We obtain \mathbf{w}, b, ξ in terms of α and μ by setting $\nabla_{w, b, \xi} L=0$:
- w.r.t. w: $\mathbf{w}=\sum_{i=1}^{n} \alpha_{i} y^{(i)} \phi\left(\mathbf{x}^{(i)}\right)$
- w.r.t. $b:-b \sum_{i=1}^{n} \alpha_{i} y^{(i)}=0$
- w.r.t. $\xi_{i}: \alpha_{i}+\mu_{i}=C$
- Thus, we get:
$L(w, b, \xi, \alpha, \mu)$
$=\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} \phi^{\top}\left(\mathbf{x}^{(i)}\right) \phi\left(\mathbf{x}^{(j)}\right)+C \sum_{i} \xi_{i}+\sum_{i} \alpha_{i}-\sum_{i} \alpha_{i} \xi_{i}-$
$\sum_{i} \alpha_{i} y^{(i)} \sum_{j} \alpha_{j} y^{(j)} \phi^{\top}\left(\mathbf{x}^{(j)}\right) \phi\left(\mathbf{x}^{(i)}\right)-b \sum_{i} \alpha_{i} y^{(i)}-\sum_{i} \mu_{i} \xi_{i}$
$=-\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} \phi^{\top}\left(\mathbf{x}^{(i)}\right) \phi\left(\mathbf{x}^{(j)}\right)+\sum_{i} \alpha_{i}$
- The dual optimization problem becomes:

$$
\max _{\alpha}-\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} \phi^{\top}\left(\mathbf{x}^{(i)}\right) \phi\left(\mathbf{x}^{(j)}\right)+\sum_{i} \alpha_{i}
$$

s.t.
$\alpha_{i} \in[0, C], \forall i$ and
$\sum_{i} \alpha_{i} y^{(i)}=0$

- Deriving this did not require the complementary slackness conditions
- Conveniently, we also end up getting rid of μ

[^0]: ${ }^{3}$ Again, you can verify that $\langle f, g\rangle$ is indeed an inner product following properties such as symmetry, linearity in the first argument and positive-definiteness: https://en.wikipedia.org/wiki/Inner_product_space

