Lecture 26: Support Vector Classification, Unsupervised Learning
Instructor: Prof. Ganesh Ramakrishnan



Support Vector Classification
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@ Perceptron does not find the best seperating hyperplane, it finds any seperating
hyperplane.

@ In case the initial w does not classify all the examples, the seperating hyperplane
corresponding to the final w* will often pass through an example.

@ The seperating hyperplane does not provide enough breathing space — this is what SVMs
address and we already saw that for regression!
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@ Perceptron does not find the best seperating hyperplane, it finds any seperating
hyperplane.

@ In case the initial w does not classify all the examples, the seperating hyperplane
corresponding to the final w* will often pass through an example.

@ The seperating hyperplane does not provide enough breathing space — this is what SVMs
address and we already saw that for regression! k.
wn P

» We now quickly do the same for classification (\S ONM e
T\ 13 -feaﬂ sson)

October 27, 2016 3/28



Support Vector Classification: Separable Case

$=(x)

w!g(x)+b>+1 fory = +1
wlg(x)+b< —1fory=—1
b1(x) w, ¢ € R™

There is large margin to seperate the +ve and -ve examples
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Support Vector Classification: Non-separable Case

When the examples are not linearly seperable,
we need to consider the slackness ¢; (always

+ve) of each example x() (how far a misclassi-
fied point is from the seperating hyperplane):

" Shl) tb2 -4, N o el
W) 1 b<-1-3, ¥ Y=

$=(x)
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Support Vector Classification: Non-separable Case

sl{aé’i'(ness
NS .
AET When the examples are not linearly seperable,

P we need to consider the slackness ¢; (always
+ve) of each example x( (how far a misclassi-
fied point is from the seperating hyperplane):
w' p(xD) 4+ b> 41— & (for y? = 41)

¢:(x) wip(x")+b< —14& (fory!) = —1)

LR CON B

Multiplyingz(") on both sides, we get:
YO(wlopxD)+b)>1—-¢,Vi=1,...,n
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Maximize the margin § -
A
* \«*’3
\5}\ o**

e We maximize the margin (¢(x™) — (b(x_))T[ﬂ%H] = =

Pvh

@ Recall that w is perpendicular to the separating surface

@ Here, x™ and x~ lie on boundaries of the margin.

@ We project the vectors ¢(x™) and ¢(x~) on w, and normalize by w as we are only
concerned with the direction of w and not its magnitude

® Jcb(m*)*\o:\ 5O
® ‘5‘4’(1') r b= ’g W (q’(f\ 4’(’“\3 22‘
2 (") - (= \3 W Tl
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Simplifying the margin expression

e Maximize the margin (¢(x") — ¢(X_))T[ﬂ¥”]

o Atxt: yT =1,¢" =0 hence, (Wlop(xt)+b) =1 —@
Atx—:y =16 =0 hence, —(w'o(x")+b) = —@

I 4 a4 October 27, 2016 7/ 28



Simplifying the margin expression

o Maximize the margin (¢(x1) — o(x7)) 7| -]

o At xt: yt =1, &t =0 hence, (w!o(x1) +
Atx:y~ =16 =0 hence, —(w'p(x")
o Adding 2) to (D),
w (p(xT) = p(x7)) =2

o Thus, the margin expression to maximize is:
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Formulating the objective

@ Problem at hand: Find w*, b* that maximize the margin. N %\,_b\
o (W*, b*) = arg maxy b||w|| 05 i‘_
T fvﬁao\ev"
s.t. y< gbx( +b ) >1—¢ and X \@\1'
° However as §, — 00, 1 =& — —o0 @\\\ 6\930'0

q_gl(\ O
\\” W+
Q:Wne¥ ave r\msa\a\e ,&;._57 - W

5L49 @P\Aa CZ4%: ¥ o\a‘)cd'w"

chve
-C Yo o]o3¢
@ Add Zi e Az 37,0
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Formulating the objective

@ Problem at hand: Find w*, b* that maximize the margin.

o (W' b*) = argmaxw,b”v%—”
st. yD(wloxl))+b) >1—¢ and S & mnvmze 221
& >0, V/—l,...,

@ However, as §; — 00, 1 — & — —00

@ Thus, with arbitrarily large values of ;, the constraints become easily satisfiable for any
w, which defeats the purpose.

e Hence, we also want to minimize the &;'s. E.g., minimize > &;
T T
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Objective

v
¥k % 1 ]2 .
o (w*, b* &) :argm|n5||w|] + gz&,
i=1
st. yD(wlop(x)) +b) >1—¢ and
& >0, ‘v’l—l,...,
@ Instead of maximizing |ﬁ, minimize %HWHQ

(%HWHQ is monotonically decreasing with respect to ”%”)

@ C determines the trade-off between the error ) &; and the margin

2
T



Support Vector Machines
Dual Objective
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2 Approaches to Showing Kernelized Form for Dual

o5 e
paskry o0 Yl = <oy W ere0 B

@ Approach 1: The Reproducing Kernel Hilbert Space and Representer theorem
(Generalized from derivation of Kernel Logistic Regression, Tutorial 7, Problem 3)
See http://qwone.com/~jason/writing/kernel.pdf for list of kernelized objectives

@ Approach 2: Derive using First principles (provided for completeness in Tutorial 9)

I 4 a4 October 27, 2016 11 /28



Approach 1: Special case of Representer Theorem & Reproducing Kernel
Hilbert Space (RKHS)

© Generalized from derivation of Kernel Logistic Regression, Tutorial 7, Problem 3. See
http://qwone.com/~jason/writing/kernel.pdf for list of kernelized objectives

@ Let X be the space of examples such that D = x) x@ .,x(’")%g X and for any

x € X, K___L’{:ﬁ,_,om a\se \iew % oS -_)(__,,‘ep\

© (Optional)! The solution 7 € H (Hilbert space) to the following problem "
=5, ~——1%ye0k \} as a space Qe

S0 *\3’3 b/ 1
S 2
,QGK ¢ = argm.nzﬂf\(x/)__'v +Q(fll ) WSA <f 57
Qs >&\ ey ok (o) ) QJ-a wlaa®
""6 can be always written as|f*(x) = 37, a;K(x, xU ))I provided €2(|f] ) is a monotonically
increasing function of ||f]| .. H is the Hilbert space and K(.,x) : X — R is called the

: h
R RKHS) K | e o\
eproducing ( S) Kerne Q “&‘B can Ve T:asu-t Jcr\‘t\« 3
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Wwiuhoeo abouy Qelgxo&uc_\_n) * ex ne)
4)\!1) = [l((ac,'x'), kGex™) - - - K('x'xm)]

AN

(Relx) P (9)) = Kln)




Approach 1: Special case of Representer Theorem & Reproducing Kernel
Hilbert Space (RKHS)

© (Optional) The solution f* € H (Hilbert space) to the following problem

-u-“’““
RS - argmmZE( (x).7) + 21l

<
an be always written as £ (x) = 3.7, a;K(x,x()), provided Q(|f],) is a ...

@ More specifically, if f(x) = w'¢(x) + b and K(x/, x) ¢ (x)¢p(x’) then the solution

w* € R" to the following problem a-\' minale gV C L
bé °P C"‘“ Coasky an £ 7 svct —‘ih‘*’“-’

(w,57) = argrvnvfgzl:E f(x7).57) + STWT)

can be always written as ¢/ (x)w* + b= Y7 a;K(x,x), provided Q(|w]|,) is a
monotonically increasing function of [w||,. R is the Hilbert space and S cd i
K(.,x) : X — R is the Reproducing (RKHS) Kernel (', cou\d e a\se ¥ vb)

I 4 a4 October 27, 2016 13 / 28



The Representer Theorem and SVC
@ The SVC Objective o ot

% gk k) . = 1 2 <
(w*, b*, &) = argvgjggiCZ&Jr 3wl ko'

(O Y e g e Do)

@ Can be rewritten as

(w*, 5", &) = arg min CZa —HWH

ﬁ\_?
st. qu(x(f)) + b),OE ‘6 (u* 4’("){\0\ :
© That is, O - A

B H\h_'}e \USS
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The Representer Theorem and SVC (contd.)

O If f(x) = wlg(x) + b and K(x',x) = ¢ (x)¢(x’) and given the SVC objective

(w*, b*, &) = arg min CZ max <1 — VD (wTp(xD) + b)70) + %||W||2

w,b,&;

@ setting E (f(x(i)) ,y(i)) = Cmax (1 — Y (wTp(xD) + b), ) and Q] HWAL “WHL

we can apply the Representer theorem to SVC, so that ¢7(x)w* + b= 3T a;K(x,x1")
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Approach 2: Derivation using First principles

Derivation similar to that for Support Vector Regression, and provided for completeness in
extra slide deck as well as in Tutorial 9

@ The dual optimization problem becomes:

.'a\
max _% SO aay K (x(’),x(ﬂ-l- S a; i@_\,d\‘.
TS T
s.t. E (2
aj € [0, (], Vi and Reea (SC"‘ SN ‘) o
) — _ s n .
Loy =0 C"(\. - D(T.) (:a(\s D(J S\“‘?D ol o(\)

R
sve 7,4y £ O
<
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Representer Theorem and RKHS
Dual Objective

( oyk\cm a\>
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The main idea
We first recap the main optimization problem
Ew) =~ | £ 3 (0wTox?) — tog (1 exp (wTox) ) ) | + Swl? (@)
m m
and an expression for w at optimality

m

1 i i i
Wt 3 (70— () ) s @)
i=1

To completely prove this specific case of KLR, let X be the space of examples such that
{x(l),x(Q), . ,x(’")} C X and for any x € X, K(.,x) : X — R be a function such that
K(x',x) = ¢T(x)p(x’). Recall that ¢(x) € R" and

1

() = P(Y = 1160 = Ty

R e e aai i/ 210 interested in viewing —ul (v ac 2 finction hlx)
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The Reproducing Kernel Hilbert Space (RKHS)

Consider the set of functions K = {K(.,x) | x € X'} and let H be the set of all functions that

are finite linear combinations of functions in C. That is, any function h € H can be written as
T
h(.) = ZatK(.,xt) for some T and x; € X', a; € R. One can easily verify that H is a vector
=1
space?

Note that, in the special case when f(x') = K(x/,x), then T= m and
f(xl) Z d) el7

where e; is such that ¢(e;) = u; € R", the unit vector along the it direction.
Also, by the same token, if w € 3" is in the search space of the regularized cross-entropy loss

function (??), then
= Z W,'K(e,', X)
i=1

2?) | he™H.
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Inner Product over RKHS H

T

For any g(.) Zﬁs ) € H and h(. ZatK (.,x¢) € H, define the inner product?
t=1

s T
8) =D Bsy aK(xi,x) (4)
s=1 t=1

Further simplifying (4),

S T s
8 = Bsd KXl xt) =) Befixs) (5)
s=1 t=1 s=1
One immediately observes that in the special case that g() = K(.,x),

{h, K(.,x)) = h(x) (6)

3Again, you can verify that (f, g) is indeed an inner product following properties such as symmetry, linearity
in the first argument and positive-definiteness: https://en.wikipedia.org/wiki/Inner_productzspace

e e o 0/




Orthogonal Decomposition
Since {x(l),x(2), . ,x(’”)} C X and K = {K(.,x) | x € X'} with H being the set of all finite

linear combinations of function in IC, we also have that

lin_span {K(.,x(l)), K(x®), .. K(, (m))} CH
Thus, we can use orthogonal projection to decompose any h € H into a sum of two functions,
one lying in /in_span{K(.,x(l)), K(x®),..., K(.,x(’"))}, and the other lying in the

orthogonal complement:

h=hl 4+ pt = ZaK )+ ht (7)

where (K(.,x"), h+) = 0, for each i = [1..m].
For a specific training point xU), substituting from (7) into (6) for any h € H, using the fact
that (K(.,x), At) =0

= Za K, xD) + ot K, xD)) = ia,u«.,x(f)), K(.,xY)) = Zm:a,-K(x() xU)

— b A s B 2



Analysis for the Empirical Risk

The Regularized Cross-Entropy Logistic Loss (1), has two parts (after ignoring the common —
factor), viz., the empirical risk

_ Zm: <y(")ngb(x(i)) — log <1 + exp (wa(i)>>> (9)

i=1

Since the empirical risk in (9) is only a function of h(x\)) = w¢(x) for i = [1..m], based
on (8) we note that the value of the empirical risk in (9) will therefore be independent of h*
and therefore one only needs to equivalently solve the following empirical risk by substituting

from (8) i.e., h(x") Za iK(x

i i _yiK (x(i),x(j)) aj | +log [ 1+ i oK (X(n’x(j))
i=1 \j=1 j=1
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Analysis with Regularizer
Consider the regularizer function ||w/||3 which is a strictly monotonically increasing function of

||w]|. Substituting w = $ [27;1 <y<i) — fw (x(i))> ¢(x(i))] from (?7), one can view Q(]|h||)

as a strictly monotonic function of ||hl|.

Q([[nl]) = @ IIZaK N+t | =0 HZ@K xD)[[2 + ||AH12

and therefore,

Q(|[hl]) = @ IIZaK D)2+ |42 | = @ HZ@K x|

That is, setting h* = 0 does not affect the first term of (1) while strictly increasing the second
term. That is, any minimizer must have optimal h*(.) with h* = 0. That is,

e TRy



Derivation of SVM Dual using First Principles (also

included in Tutorial 9)
Dual Objective
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Dual function

o Let L*(a, ) = ming pe L(W, b, &, o, 1)

@ By weak duality theorem, we have:
L*(c, ) < min pe 3 w[ + CS 2, &
sty< Tgbx( —|—b)21—£,~,and

§I > 0, \V/I = 1
@ The above is true for any o; > 0 and p; >0
@ Thus,
. 1
max L*(a, 1) < min 5w/ +CZ§:
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Dual objective

@ In case of SVM, we have a strictly convex objective and linear constraints — therefore,
strong duality holds:

* . 1 2 4
max L (a 1) = min = lw® + C;&

@ This value is precisely obtained at the (w*, b*, £*, o*, u*) that satisfies the necessary (and
sufficient) optimality conditions

@ Assuming that the necessary and sufficient conditions (KKT or Karush—Kuhn—Tucker
conditions) hold, our objective becomes:

max L*(a, pt)
o,

e TR



o L(w, b€ a,p) = g|w|>+ CXL &+ Za:(l — &=y (wTo(x) + b)) — ZM:S:

@ We obtain w, b, £ in terms of a and u by setting Vy, pel = O:
> w.rt. wi w= 3 S ayDp(x)
1—1
> w.rt. b: —bZay(’)—O
> w.r.t. &-l Oél+:’LI_C
@ Thus, we get:
(W b,¢, a, )
=32 > aiop)yD T (x() (X(J))+CZ §it D0 — D0k —
Z :y()Z ajy) ¢T(X(’) P(x )—bE ait) — 37, uigi
—3 303 iy I T (x D) p(x D) + 37,

\//\
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@ The dual optimization problem becomes:

1 N ) )
max—5 3 3" a7 (x o) + 3 a
i J i

s.t.
a;j € [0, (], Viand
Ziaiy(i) =0

@ Deriving this did not require the complementary slackness conditions

@ Conveniently, we also end up getting rid of p
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