Lecture 26: Support Vector Classification, Unsupervised Learning
Instructor: Prof. Ganesh Ramakrishnan



Support Vector Classification

o F = = E DAl



@ Perceptron does not find the best seperating hyperplane, it finds any seperating
hyperplane.

@ In case the initial w does not classify all the examples, the seperating hyperplane
corresponding to the final w* will often pass through an example.

@ The seperating hyperplane does not provide enough breathing space — this is what SVMs
address and we already saw that for regression!
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@ Perceptron does not find the best seperating hyperplane, it finds any seperating
hyperplane.

@ In case the initial w does not classify all the examples, the seperating hyperplane
corresponding to the final w* will often pass through an example.

@ The seperating hyperplane does not provide enough breathing space — this is what SVMs
address and we already saw that for regression!

» We now quickly do the same for classification
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Support Vector Classification: Separable Case

$2(x)

w!g(x)+b>+1 fory = +1
wlg(x)+b< —1fory=—1
P:1(%) w,p € IR™

There is large margin to seperate the +ve and -ve examples
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Support Vector Classification: Non-separable Case

slaéi(ness

N -
e When the examples are not linearly seperable,

ST we need to consider the slackness ¢; (always

+ve) of each example x( (how far a misclassi-
fied point is from the seperating hyperplane):

L CON B

$1(x)
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Support Vector Classification: Non-separable Case

When the examples are not linearly seperable,
we need to consider the slackness ¢; (always

+ve) of each example x( (how far a misclassi-
fied point is from the seperating hyperplane):
w' p(xD) 4+ b> 1 — & (for y? = 41)

$:(x) w! p(xD) 4+ b< —1+¢& (for y = —1)

$=(x)

Multiplying y) on both sides, we get:
VO(wTopxD)+b)>1—¢,Vi=1,...,n
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Maximize the margin

e We maximize the margin (¢(x") — ¢(x_))T[”%”]
@ Here, x™ and x~ lie on boundaries of the margin.
@ Recall that w is perpendicular to the separating surface

@ We project the vectors ¢(x™) and ¢(x~) on w, and normalize by w as we are only
concerned with the direction of w and not its magnitude
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Simplifying the margin expression

o Maximize the margin (¢(x1) — ¢(x7)) T[]

(Twll
o Atxt: yT =1,¢" =0 hence, (Wlop(xt)+b) =1 —@
Atx :y =16 =0hence, —(w'p(x")+b) =1 —@
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Simplifying the margin expression

o Maximize the margin (¢(x1) — ¢(x7)) T[]

lIwll
o Atxt: yT =1,¢" =0 hence, (Wlop(xt)+b) =1 —@
Atx :y =16 =0hence, —(w'p(x")+b) =1 —@
o Adding @ to @
w(o(x*) — ¢(x7)) =2

@ Thus, the margin expression to maximize is: ”%”
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Formulating the objective

@ Problem at hand: Find w*, b* that maximize the margin.
o (W' b*) = argmaxw,b”%”

st. yD(wlox))+b) >1—¢ and

& >0, V/—l,...,

@ However, as & — 00, 1 — & — —0
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Formulating the objective

@ Problem at hand: Find w*, b* that maximize the margin.

o (W", b*)=arg maxw7b”%”
st. yD(wlox))+b) >1—¢ and
& >0, V/—l,...,

@ However, as £ — o0, 1 — & — —00

@ Thus, with arbitrarily large values of &;, the constraints become easily satisfiable for any
w, which defeats the purpose.

e Hence, we also want to minimize the &;'s. E.g., minimize > ¢&;
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Objective

* Lk R\ 1 2 .
e (W' b ,§i)—argm|n_§||w|] +C;£,~
st. yD(wlop(x)) +b) >1—¢ and
f,ZO,‘v’l—l,...,

@ Instead of maximizing |ﬁ, minimize %HWHQ
( lw||* is monotonically decreasing with respect to ||W||)

@ C determines the trade-off between the error ) &; and the margin

2
|w



Support Vector Machines
Dual Objective

o = = = = 9an



2 Approaches to Showing Kernelized Form for Dual

@ Approach 1: The Reproducing Kernel Hilbert Space and Representer theorem
(Generalized from derivation of Kernel Logistic Regression, Tutorial 7, Problem 3)
See http://qwone.com/~jason/writing/kernel.pdf for list of kernelized objectives

@ Approach 2: Derive using First principles (provided for completeness in Tutorial 9)

e S e


http://qwone.com/~jason/writing/kernel.pdf

Approach 1: Special case of Representer Theorem & Reproducing Kernel
Hilbert Space (RKHS)

@ Generalized from derivation of Kernel Logistic Regression, Tutorial 7, Problem 3. See
http://qwone.com/~jason/writing/kernel.pdf for list of kernelized objectives

@ Let X be the space of examples such that D = {x(l),x@), . ,x(’")} C X and for any
xeX, K(,x): X =R
© (Optional)! The solution 7 € H (Hilbert space) to the following problem

- argmmZE< (x). “>> + Q1] )

can be always written as f(x) = >.7, a;K(x,x(), provided Q(|f]x) is a monotonically
increasing function of ||f]| .. H is the Hilbert space and K(.,x) : X — R is called the
Reproducing (RKHS) Kernel

!Proof provided in optional slide deck at the end
e TS


http://qwone.com/~jason/writing/kernel.pdf

Approach 1: Special case of Representer Theorem & Reproducing Kernel
Hilbert Space (RKHS)

© (Optional) The solution f* € H (Hilbert space) to the following problem

- argmmZE( (x).57) + 21l

can be always written as #(x) = 3.7, a;K(x,x("), provided Q(|f]) is a ...

@ More specifically, if f(x) = w’¢(x)+ band K(x',x) = ¢ (x)p(x") then the solution
w* € R” to the following problem

N : (i) (i)
o) = sy > (f(x ).y ) +(wll,)

can be always written as ¢ (x)w* + b= >"7 a;K(x,x), provided Q(|w]|,) is a
monotonically increasing function of ||w||,. R™*! is the Hilbert space and
K(.,x) : X — R is the Reproducing (RKHS) Kernel
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The Representer Theorem and SVC
@ The SVC Objective

(w", 5", &) = arg min CZ& —lel

771

sit. Y\ (w —|—b)>1—§,and
51 >0, \V/I = 1
@ Can be rewritten as

(w*, 5", &) = arg min CZa —HWH

”l

s.t. max <1 — Y (wTp(xD) + b), 0) =&
© That is,

; 1
(wW*, b*, &) = arg min CZ max (1 — D (wTp(x) + b),O) + §HWH2

7b7 i
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The Representer Theorem and SVC (contd.)

Q If f(x) = wlg(x) + b and K(x',x) = ¢ (x)¢(x’) and given the SVC objective

(W*, b*, &) = arg min CZ max <1 — YD (wo(x") + b),O) + %||W||2

w,b,&;

Q setting E (f(x(i)) ,y(i)> = Cmax (1 — YD (wTe(x) 4 b),O) and Q(|w]|) = 2Hw||
we can apply the Representer theorem to SVC, so that ¢7(x)w* + b= ST a;K(x, x ()
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Approach 2: Derivation using First principles

Derivation similar to that for Support Vector Regression, and provided for completeness in
extra slide deck as well as in Tutorial 9

@ The dual optimization problem becomes:

max——ZZaay(’) (J)K< )-I-Zoz,

s.t.
€ [0, d, Vi and

&7
Ziai)/(i) =0
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Representer Theorem and RKHS
Dual Objective



The main idea
We first recap the main optimization problem
Ew) =~ | £ 3= (0wTox) — tog (1 exp (wTox) ) ) | + S wl (@)
m m
and an expression for w at optimality

m

1 i i i
w1 Z<y<>_fw (Xo)) () 2)
i=1

To completely prove this specific case of KLR, let X be the space of examples such that
{x(l),x(Q), e ,x(’")} C X and for any x € X, K(.,x) : X — R be a function such that
K(x',x) = ¢T(x)p(x). Recall that ¢(x) € R" and

1

(0 = PUY = 1000 = o

e eat S iy 2 212 interested in viswing (v ac 2 function hix)
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The Reproducing Kernel Hilbert Space (RKHS)

Consider the set of functions K = {K(.,x) | x € X'} and let H be the set of all functions that

are finite linear combinations of functlons in C. That is, any function h € H can be written as
T
h(.) = ZatK(.,xt) for some T and x; € X, a; € R. One can easily verify that H is a vector
=1
space?

Note that, in the special case when f(x') = K(x/,x), then T= m and
f(xl) Z d) el7

where e; is such that ¢(e;) = u; € R”, the unit vector along the it direction.
Also, by the same token, if w € " is in the search space of the regularized cross-entropy loss

function (??), then
= Z W,'K(e,', X)
i=1

27?) | he™H.
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Inner Product over RKHS H

T

For any g(.) Zﬁs ) € H and h(. ZatK (.,x¢) € H, define the inner product?
t=1

s T
8) =D Bsy aK(xi,x) (4)
s=1 t=1

Further simplifying (4),

S T s
8 = Bsd arKxxe) =) Befixs) (5)
s=1 t=1 s=1
One immediately observes that in the special case that g() = K(.,x),

{h, K(.,x)) = h(x) (6)

3Again, you can verify that (f, g) is indeed an inner product following properties such as symmetry, linearity
in the first argument and positive-definiteness: https://en.wikipedia.org/wiki/Inner_product=space
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https://en.wikipedia.org/wiki/Inner_product_space

Orthogonal Decomposition
Since {x(l),x(2), . ,x(m)} C X and K = {K(.,x) | x € X} with H being the set of all finite

linear combinations of function in KC, we also have that

lin_span {K(., xM), K(xP), .. K(., (m))} CH
Thus, we can use orthogonal projection to decompose any h € H into a sum of two functions,
one lying in /in_span{K(.,x(l)), K(.x®), ..., K(.,x(’"))}, and the other lying in the

orthogonal complement:

h=hl 4+ pt = ZaK )+t (7)

where (K(.,x"), h+) = 0, for each i = [1..m].
For a specific training point xU), substituting from (7) into (6) for any h € #, using the fact
that (K(.,x0), ht) =0

(3 K x) 4 B Kx ) = 3 K x ), K(x D)) = 3 ek, 50

— e



Analysis for the Empirical Risk

The Regularized Cross-Entropy Logistic Loss (1), has two parts (after ignoring the common +
factor), viz., the empirical risk

_ Zm: <y(">ngb(x(i)) — log <1 + exp (wa(i)>>> (9)
i=1

Since the empirical risk in (9) is only a function of h(x')) = w¢(x) for i = [1..m], based
on (8) we note that the value of the empirical risk in (9) will therefore be independent of h*
and therefore one only needs to equivalently solve the following empirical risk by substituting

from (8) i.e., h(x") Za iK(x

i i_ymK (X(i)vx(j)) a5 | +1og 1 +§:ajK (Xm’x(j))
i=1 \j=1

j=1
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Analysis with Regularizer
Consider the regularizer function ||w||3 which is a strictly monotonically increasing function of

||w]|. Substituting w = § [Z:’;l <y<i) — fw <x(i))> ¢(x(i))] from (?7), one can view Q(||h||)

as a strictly monotonic function of ||hl|.

Q([[nl]) = @ IIZaK N+t | =0 HZ@K x D)2+ ||AH12

and therefore,

Q(|[nl]) = IIZaK D)2+ |12 | = @ HZ@K x|

That is, setting h* = 0 does not affect the first term of (1) while strictly increasing the second
term. That is, any minimizer must have optimal h*(.) with h* = 0. That is,
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Derivation of SVM Dual using First Principles (also

included in Tutorial 9)
Dual Objective



Dual function

o Let L*(a, ) = ming pe L(W, b, &, o, 1)
@ By weak duality theorem, we have:
L*(a, 1) < minwpe 3[w]* + CY L, &
sty< Tgbx( —|—b)21—£,~,and
£ >0, V/ =1,.
@ The above is true for any o; > 0 and p; >0
@ Thus,

Iwil? + czg,

l\.'JlH

max L* (o, ) < m
a, w,b
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Dual objective

@ In case of SVM, we have a strictly convex objective and linear constraints — therefore,
strong duality holds:

* . 1 2 4
max L*(a 1) = min o [[wl” + C;&

@ This value is precisely obtained at the (w*, b*, £*, a*, u*) that satisfies the necessary (and
sufficient) optimality conditions

@ Assuming that the necessary and sufficient conditions (KKT or Karush—Kuhn—Tucker
conditions) hold, our objective becomes:

max L*(a, p)
o,
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o L(w,b,& a,p) = 3w+ CZ,_1£:+Za: 1= &=y (wTo(xD) + b)) - Zluif;
=
@ We obtain w, b, £ in terms of « and p by setting Vi, peL = 0:
> wrt. wi w= ; S ayp(x)
1—1
> w.r.t. b: —bZay(’)—O
=1
> w.r.t. EI 041+1U'I—C
@ Thus, we get:
(W b,¢, a, )

=52 > aiajy Iy DT (xN)p(xW) + CY &+ 30— 3 i —
Z :y()z ajyd) ¢T(X“) p(x) — bZ a) =37, piéi
- 22 Z aajy(l)y(j ¢T ) CZ) )-I_Zial
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@ The dual optimization problem becomes:

max——ZZany o (x )Qﬁ(xw)—i—Za;

s.t.
€ [0,(], Viand
Ziaiy(i) =0
@ Deriving this did not require the complementary slackness conditions

@ Conveniently, we also end up getting rid of
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