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Lecture 26: Support Vector Classification, Unsupervised Learning
Instructor: Prof. Ganesh Ramakrishnan
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Support Vector Classification
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Perceptron does not find the best seperating hyperplane, it finds any seperating
hyperplane.
In case the initial w does not classify all the examples, the seperating hyperplane
corresponding to the final w∗ will often pass through an example.
The seperating hyperplane does not provide enough breathing space – this is what SVMs
address and we already saw that for regression!

▶ We now quickly do the same for classification
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Support Vector Classification: Separable Case

w⊤ϕ(x) + b ≥ +1 for y = +1
w⊤ϕ(x) + b ≤ −1 for y = −1
w, ϕ ∈ IRm

There is large margin to seperate the +ve and -ve examples
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Support Vector Classification: Non-separable Case

When the examples are not linearly seperable,
we need to consider the slackness ξi (always
+ve) of each example x(i) (how far a misclassi-
fied point is from the seperating hyperplane):

w⊤ϕ(x(i)) + b ≥ +1− ξi (for y(i) = +1)
w⊤ϕ(x(i)) + b ≤ −1 + ξi (for y(i) = −1)

Multiplying y(i) on both sides, we get:
y(i)(w⊤ϕ(x(i)) + b) ≥ 1− ξi, ∀i = 1, . . . , n
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Maximize the margin

We maximize the margin (ϕ(x+)− ϕ(x−))⊤[ w
∥w∥ ]

Here, x+ and x− lie on boundaries of the margin.
Recall that w is perpendicular to the separating surface
We project the vectors ϕ(x+) and ϕ(x−) on w, and normalize by w as we are only
concerned with the direction of w and not its magnitude

October 27, 2016 6 / 28
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Simplifying the margin expression

Maximize the margin (ϕ(x+)− ϕ(x−))⊤[ w
∥w∥ ]

At x+: y+ = 1, ξ+ = 0 hence, (w⊤ϕ(x+) + b) = 1 — 1
At x−: y− = 1, ξ− = 0 hence, −(w⊤ϕ(x−) + b) = 1 — 2

Adding 2 to 1 ,
w⊤(ϕ(x+)− ϕ(x−)) = 2

Thus, the margin expression to maximize is: 2
∥w∥
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Formulating the objective

Problem at hand: Find w∗, b∗ that maximize the margin.
(w∗, b∗) = arg maxw,b

2
∥w∥

s.t. y(i)(w⊤ϕ(x(i)) + b) ≥ 1− ξi and
ξi ≥ 0, ∀i = 1, . . . , n
However, as ξi → ∞, 1− ξi → −∞

Thus, with arbitrarily large values of ξi, the constraints become easily satisfiable for any
w, which defeats the purpose.
Hence, we also want to minimize the ξi’s. E.g., minimize

∑
ξi
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Objective

(w∗, b∗, ξ∗i ) = arg min
w,b,ξi

1

2
∥w∥2 + C

n∑
i=1

ξi

s.t. y(i)(w⊤ϕ(x(i)) + b) ≥ 1− ξi and
ξi ≥ 0, ∀i = 1, . . . , n
Instead of maximizing 2

∥w∥ , minimize 1
2∥w∥2

(12∥w∥2 is monotonically decreasing with respect to 2
∥w∥)

C determines the trade-off between the error
∑

ξi and the margin 2
∥w∥
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Support Vector Machines
Dual Objective
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2 Approaches to Showing Kernelized Form for Dual

1 Approach 1: The Reproducing Kernel Hilbert Space and Representer theorem
(Generalized from derivation of Kernel Logistic Regression, Tutorial 7, Problem 3)
See http://qwone.com/~jason/writing/kernel.pdf for list of kernelized objectives

2 Approach 2: Derive using First principles (provided for completeness in Tutorial 9)

October 27, 2016 11 / 28
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Approach 1: Special case of Representer Theorem & Reproducing Kernel
Hilbert Space (RKHS)

1 Generalized from derivation of Kernel Logistic Regression, Tutorial 7, Problem 3. See
http://qwone.com/~jason/writing/kernel.pdf for list of kernelized objectives

2 Let X be the space of examples such that D =
{

x(1),x(2), . . . ,x(m)
}
⊆ X and for any

x ∈ X , K(.,x) : X → ℜ
3 (Optional)1 The solution f∗ ∈ H (Hilbert space) to the following problem

f∗ = argmin
f∈H

m∑
i=1

E
(

f
(

x(i)
)
, y(i)

)
+Ω(∥f∥K)

can be always written as f∗(x) =
∑m

i=1 αiK(x,x(i)), provided Ω(∥f∥K) is a monotonically
increasing function of ∥f∥K. H is the Hilbert space and K(.,x) : X → ℜ is called the
Reproducing (RKHS) Kernel

1Proof provided in optional slide deck at the end
October 27, 2016 12 / 28

http://qwone.com/~jason/writing/kernel.pdf


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Approach 1: Special case of Representer Theorem & Reproducing Kernel
Hilbert Space (RKHS)

1 (Optional) The solution f∗ ∈ H (Hilbert space) to the following problem

f∗ = argmin
f∈H

m∑
i=1

E
(

f
(

x(i)
)
, y(i)

)
+Ω(∥f∥K)

can be always written as f∗(x) =
∑m

i=1 αiK(x,x(i)), provided Ω(∥f∥K) is a ....
2 More specifically, if f (x) = wTϕ(x) + b and K(x′,x) = ϕT(x)ϕ(x′) then the solution

w∗ ∈ ℜn to the following problem

(w∗, b∗) = argmin
w,b

m∑
i=1

E
(

f
(

x(i)
)
, y(i)

)
+Ω(∥w∥2)

can be always written as ϕT(x)w∗ + b =
∑m

i=1 αiK(x,x(i)), provided Ω(∥w∥2) is a
monotonically increasing function of ∥w∥2. ℜn+1 is the Hilbert space and
K(.,x) : X → ℜ is the Reproducing (RKHS) Kernel
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The Representer Theorem and SVC
1 The SVC Objective

(w∗, b∗, ξ∗i ) = arg min
w,b,ξi

C
m∑

i=1

ξi +
1

2
∥w∥2

s.t. y(i)(w⊤ϕ(x(i)) + b) ≥ 1− ξi and
ξi ≥ 0, ∀i = 1, . . . ,m

2 Can be rewritten as
(w∗, b∗, ξ∗i ) = arg min

w,b,ξi
C

m∑
i=1

ξi +
1

2
∥w∥2

s.t. max
(
1− y(i)(w⊤ϕ(x(i)) + b), 0

)
= ξi

3 That is,

(w∗, b∗, ξ∗i ) = arg min
w,b,ξi

C
m∑

i=1

max
(
1− y(i)(w⊤ϕ(x(i)) + b), 0

)
+

1

2
∥w∥2

October 27, 2016 14 / 28
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The Representer Theorem and SVC (contd.)

1 If f (x) = wTϕ(x) + b and K(x′,x) = ϕT(x)ϕ(x′) and given the SVC objective

(w∗, b∗, ξ∗i ) = arg min
w,b,ξi

C
m∑

i=1

max
(
1− y(i)(w⊤ϕ(x(i)) + b), 0

)
+

1

2
∥w∥2

2 setting E
(

f
(

x(i)
)
, y(i)

)
= C max

(
1− y(i)(w⊤ϕ(x(i)) + b), 0

)
and Ω(∥w∥) = 1

2∥w∥2,

we can apply the Representer theorem to SVC, so that ϕT(x)w∗ + b =
∑m

i=1 αiK(x,x(i))

October 27, 2016 15 / 28
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Approach 2: Derivation using First principles

Derivation similar to that for Support Vector Regression, and provided for completeness in
extra slide deck as well as in Tutorial 9

The dual optimization problem becomes:

max
α

−1

2

∑
i

∑
j
αiαjy(i)y(j)K

(
x(i),x(j)

)
+
∑

i
αi

s.t.
αi ∈ [0,C], ∀i and∑

i αiy(i) = 0
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Representer Theorem and RKHS
Dual Objective
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The main idea
We first recap the main optimization problem

E (w) = −

 1

m

m∑
i=1

(
y(i)wTϕ(x(i))− log

(
1 + exp

(
wTϕ(x(i))

)))+
λ

2m ||w||2 (1)

and an expression for w at optimality

w =
1

λ

 m∑
i=1

(
y(i) − fw

(
x(i)
))

ϕ(x(i))

 (2)

To completely prove this specific case of KLR, let X be the space of examples such that{
x(1),x(2), . . . ,x(m)

}
⊆ X and for any x ∈ X , K(.,x) : X → ℜ be a function such that

K(x′,x) = ϕT(x)ϕ(x′). Recall that ϕ(x) ∈ ℜn and

fw(x) = p(Y = 1|ϕ(x)) = 1

1 + exp
(
−wTϕ(x)

)
For the rest of the discussion, we are interested in viewing −wTϕ(x) as a function h(x)

fw(x) = p(Y = 1|ϕ(x)) = 1

1 + exp (h(x))
We will prove that for the optimization problem (1), h(x) can be equivalently expressed as∑m

j=1 αjK
(

x,x(j)
)

, as a result of which we will obtain the following terms of (??): m∑
i=1

 m∑
j=1

−y(i)K
(

x(i),x(j)
)
αj

+ log

1 +
m∑

j=1

αjK
(

x(i),x(j)
)
 (3)

Substituting (2) into λ
2m ||w||2 term of (1) we will get the regularizer into the form

m∑
i=1

m∑
j=1

λ

2
αiK

(
x(i),x(j)

)
αj

which forms the remaining term of (??)
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The Reproducing Kernel Hilbert Space (RKHS)
Consider the set of functions K =

{
K(.,x) | x ∈ X

}
and let H be the set of all functions that

are finite linear combinations of functions in K. That is, any function h ∈ H can be written as

h(.) =
T∑

t=1

αtK(.,xt) for some T and xt ∈ X , αt ∈ ℜ. One can easily verify that H is a vector

space2

Note that, in the special case when f(x′) = K(x′,x), then T = m and

f(x′) = K(x′,x) =
n∑

i=1

ϕi(x′)K(ei,x)

where ei is such that ϕ(ei) = ui ∈ ℜn, the unit vector along the ith direction.
Also, by the same token, if w ∈ ℜn is in the search space of the regularized cross-entropy loss
function (??), then

ϕT(x′)w =
n∑

i=1

wiK(ei,x)

Thus, the solution to (??) is an h ∈ H.
2Try it yourself. Prove that H is closed under vector addition and (real) scalar multiplication.October 27, 2016 19 / 28
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Inner Product over RKHS H

For any g(.) =
S∑

t=1

βsK(.,x′
s) ∈ H and h(.) =

T∑
t=1

αtK(.,xt) ∈ H, define the inner product3

⟨h, g⟩ =
S∑

s=1

βs

T∑
t=1

αtK(x′
s,xt) (4)

Further simplifying (4),

⟨h, g⟩ =
S∑

s=1

βs

T∑
t=1

αtK(x′
s,xt) =

S∑
s=1

βsf(xs) (5)

One immediately observes that in the special case that g() = K(.,x),

⟨h,K(.,x)⟩ = h(x) (6)

3Again, you can verify that ⟨f, g⟩ is indeed an inner product following properties such as symmetry, linearity
in the first argument and positive-definiteness: https://en.wikipedia.org/wiki/Inner_product_space
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Orthogonal Decomposition
Since

{
x(1),x(2), . . . ,x(m)

}
⊆ X and K =

{
K(.,x) | x ∈ X

}
with H being the set of all finite

linear combinations of function in K, we also have that
lin_span

{
K(.,x(1)),K(.x(2)), . . . ,K(.,x(m))

}
⊆ H

Thus, we can use orthogonal projection to decompose any h ∈ H into a sum of two functions,
one lying in lin_span

{
K(.,x(1)),K(.x(2)), . . . ,K(.,x(m))

}
, and the other lying in the

orthogonal complement:

h = h∥ + h⊥ =

m∑
i=1

αiK(.,x(i)) + h⊥ (7)

where ⟨K(.,x(i)), h⊥⟩ = 0, for each i = [1..m].
For a specific training point x(j), substituting from (7) into (6) for any h ∈ H, using the fact
that ⟨K(.,x(i)), h⊥⟩ = 0

h(x(j)) = ⟨
m∑

i=1

αiK(.,x(i)) + h⊥,K(.,x(j))⟩ =
m∑

i=1

αi⟨K(.,x(i)),K(.,x(j))⟩ =
m∑

i=1

αiK(x(i),x(j))

(8)
which we observe is independent of h⊥.
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Analysis for the Empirical Risk
The Regularized Cross-Entropy Logistic Loss (1), has two parts (after ignoring the common 1

m
factor), viz., the empirical risk

−

 m∑
i=1

(
y(i)wTϕ(x(i))− log

(
1 + exp

(
wTx(i)

))) (9)

Since the empirical risk in (9) is only a function of h(x(i)) = wTϕ(x(i)) for i = [1..m], based
on (8) we note that the value of the empirical risk in (9) will therefore be independent of h⊥
and therefore one only needs to equivalently solve the following empirical risk by substituting

from (8) i.e., h(x(j)) =
m∑

i=1

αiK(x(i),x(j)): m∑
i=1

 m∑
j=1

−y(i)K
(

x(i),x(j)
)
αj

+ log

1 +
m∑

j=1
αjK

(
x(i),x(j)

)

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Analysis with Regularizer
Consider the regularizer function ||w||22 which is a strictly monotonically increasing function of

||w||. Substituting w = 1
λ

[∑m
i=1

(
y(i) − fw

(
x(i)
))

ϕ(x(i))

]
from (??), one can view Ω(||h||)

as a strictly monotonic function of ||h||.

Ω(||h||) = Ω

||
m∑

i=1

αiK(.,x(i)) + h⊥||

 = Ω


√√√√||

m∑
i=1

αiK(.,x(i))||2 + ||h⊥||2


and therefore,

Ω(||h||) = Ω


√√√√||

m∑
i=1

αiK(.,x(i))||2 + ||h⊥||2

 ≥ Ω


√√√√||

m∑
i=1

αiK(.,x(i))||2


That is, setting h⊥ = 0 does not affect the first term of (1) while strictly increasing the second
term. That is, any minimizer must have optimal h∗(.) with h⊥ = 0. That is,

h(x) =
m∑

i=1

αiK(x(i),x)
October 27, 2016 23 / 28



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Derivation of SVM Dual using First Principles (also
included in Tutorial 9)

Dual Objective
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Dual function

Let L∗(α, µ) = minw,b,ξ L(w, b, ξ, α, µ)
By weak duality theorem, we have:
L∗(α, µ) ≤ minw,b,ξ

1
2∥w∥2 + C

∑n
i=1 ξi

s.t. y(i)(w⊤ϕ(x(i)) + b) ≥ 1− ξi, and
ξi ≥ 0, ∀i = 1, . . . , n
The above is true for any αi ≥ 0 and µi ≥ 0

Thus,

max
α,µ

L∗(α, µ) ≤ min
w,b,ξ

1

2
∥w∥2 + C

n∑
i=1

ξi
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Dual objective

In case of SVM, we have a strictly convex objective and linear constraints – therefore,
strong duality holds:

max
α,µ

L∗(α, µ) = min
w,b,ξ

1

2
∥w∥2 + C

n∑
i=1

ξi

This value is precisely obtained at the (w∗, b∗, ξ∗, α∗, µ∗) that satisfies the necessary (and
sufficient) optimality conditions
Assuming that the necessary and sufficient conditions (KKT or Karush–Kuhn–Tucker
conditions) hold, our objective becomes:

max
α,µ

L∗(α, µ)
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L(w, b, ξ, α, µ) = 1
2∥w∥2 + C

∑n
i=1 ξi +

n∑
i=1

αi(1− ξi − y(i)(w⊤ϕ(x(i)) + b))−
n∑

i=1
µiξi

We obtain w, b, ξ in terms of α and µ by setting ∇w,b,ξL = 0:

▶ w.r.t. w: w =
n∑

i=1

αiy(i)ϕ(x(i))

▶ w.r.t. b: −b
n∑

i=1

αiy(i) = 0

▶ w.r.t. ξi: αi + µi = C

Thus, we get:
L(w, b, ξ, α, µ)
= 1

2

∑
i
∑

j αiαjy(i)y(j)ϕ⊤(x(i))ϕ(x(j)) + C
∑

i ξi +
∑

i αi −
∑

i αiξi −∑
i αiy(i)

∑
j αjy(j)ϕ⊤(x(j))ϕ(x(i))− b

∑
i αiy(i) −

∑
i µiξi

= −1
2

∑
i
∑

j αiαjy(i)y(j)ϕ⊤(x(i))ϕ(x(j)) +
∑

i αi
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The dual optimization problem becomes:

max
α

−1

2

∑
i

∑
j
αiαjy(i)y(j)ϕ⊤(x(i))ϕ(x(j)) +

∑
i
αi

s.t.
αi ∈ [0,C], ∀i and∑

i αiy(i) = 0

Deriving this did not require the complementary slackness conditions
Conveniently, we also end up getting rid of µ

October 27, 2016 28 / 28


