Lecture 26b: Unsupervised Learning: Dimensionality Reduction, Embeddings, PCA etc Instructor: Prof. Ganesh Ramakrishnan

900

1 / 15

October 28, 2016

Recall: Supervised Feature Selection based on Gain

- S is a sample of training examples, p_{C_i} is proportion of examples with class C_i in S
- Entropy measures impurity of S: $H(S) \equiv \sum_{i=1}^{N} -p_{C_i} \log_2 p_{C_i}$
- Selecting R best attributes: Let $\mathcal{R} = \emptyset$
- $Gain(S, \phi_i) = expected Gain due to choice of <math>\phi_i$ Eg: Gain based on entropy - $Gain(S, \phi_i) \equiv H(S) - \sum_{v \in Values(\phi_i)} \frac{|S_v|}{|S|} H(S_v)$ Do: • $\phi^* = \operatorname*{argmax}_{\phi_i \setminus \mathcal{V}} Gain(S, \phi_i)$ • $\mathcal{R} = \mathcal{R} \cup \{\phi^*\}$ Until $|\mathcal{R}| = R$
- Q: Other measures of Gain: Gini Index, Classification Error, etc.

Supervised Feature Subset Selection (Optional)

- One can also Optimally select subset of features using Iterative Hard Thresholding¹ for **Optimal Feature Selection**
- Input: Error function E(w) with gradient oracle to compute $\nabla E(w)$ sparsity level *s*, step-size η :
- $\mathbf{w}^{(0)} = 0$, t = 1
- while not converged do

w^(t+1) = P_s (w^(t) - η∇_wE(w^(t))) //Projection function P_s(.) picks the highest weighted s features as per the update w^(t) - η∇_wE(w^(t)) and sets rest to 0
t = t + 1

- end while
- Output: $\mathbf{w}^{(t)}$

¹https://arxiv.org/pdf/1410.5137v2.pdf

From Supervised to Unsupervised Dimensionality Reduction

Recap: Feature Selection

- Supervised (greedy) Feature Selection based on Gain
- Optimally feature subset Selection (Eg: Lasso or Iterative Hard Thresholding)

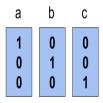
Question: What if one wants to do dimensionality reduction independent of any class-based supervision?

Recap: One Hot Encoding for Characters

- With 3 characters in vocabulary, *a*,*b* and *c*, what would be the best encoding to inform each character occurrence to the network?
- One Hot Encoding: Give a unique key k to each character in alpha-numeric order, and encode each character with a vector of vocabulary size, with a 1 for the k^{th} element, and 0 for all other elements.

Recap: One Hot Encoding for Characters

- With 3 characters in vocabulary, *a*,*b* and *c*, what would be the best encoding to inform each character occurrence to the network?
- One Hot Encoding: Give a unique key k to each character in alpha-numeric order, and encode each character with a vector of vocabulary size, with a 1 for the k^{th} element, and 0 for all other elements.



Encoding Words

In unsupervised are Setting, these hidden How to encode the words for the task of labeling a drama reviews as "liked" or "not liked"

- Review 1: The drama was interesting, loved the way each scene was directed. I simply loved everything in the drama.
- Review 2: I had three boring hours. Very boring to watch.
- Review 3: I liked the role each that was assigned to each super star. Especially loved the performance of actor.
- Review 4: Though I hate all the dramas of the director, this one was an exception with lot of entertainment.

Encoding Words

How to encode the words for the task of labeling a "drama' reviews as "liked" or "not liked" ?

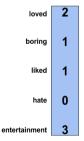
- One Hot Encoding of Words.
- Bag Of Words, similar to one hot encoding of characters
 - Use the vocabulary of highly frequent words in reviews.
 - ▶ Use the word frequency in each review instead of "1".

Encoding Words

How to encode the words for the task of labeling a "drama' reviews as "liked" or "not liked" ?

- One Hot Encoding of Words.
- Bag Of Words, similar to one hot encoding of characters
 - Use the vocabulary of highly frequent words in reviews.
 - ▶ Use the word frequency in each review instead of "1".

A review in Bag Of Words Form:-



loved

for realers

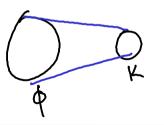
200

7 / 15

October 28, 2016

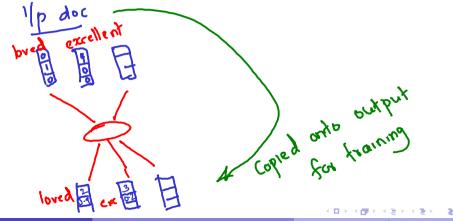
Limitations of Bag of Words or One Hot Encoding for words

- High Dimension: In real life scenario, the vocabulary size could be huge.
- Lacks Contextual Similarity e.g. liked and loved are contextually similar words. 11 (spirit of unsupervised learning) So far, our view of (learning) Was through K classes. Can we view of A interactions directly).



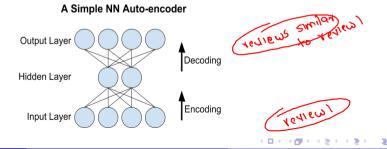
Dimensionality Reduction techniques.

- Bag of Frequent Words: Contextual similarity is still lacking.
- What happens if one passes a one hot encoded word as both input and output to a NN?



Dimensionality Reduction techniques.

- Bag of Frequent Words: Contextual similarity is still lacking.
- What happens if one passes a one hot encoded word as both input and output to a NN?
- NN Auto-encoder: Output has same form as input. We extract the encoded vector from the hidden layer.



After unsupervised training with lot of online data, can a machine answer the questions like:-

- King Man + Woman = ? Queen [is auto encoder capable of recovering and recovering recovering and recovering recovering and recovering recovering recovering recovering and recovering re
- If France: Paris, then Japan:? Toky o T .

Operations in hidden layer context: King Mr Queen Mr Man woman

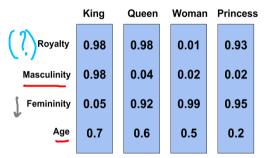
	King	Queen	Woman	Princess
Royalty	0.98	0.98	0.01	0.93
Masculinity	0.98	0.04	0.02	0.02
Femininity	0.05	0.92	0.99	0.95
Age	0.7	0.6	0.5	0.2
~~~				

#### A Hypothetical Word Vector Representation

Latent Semantic concepto from hidden layers

200

• • • • • • • • • • •



#### A Hypothetical Word Vector Representation

• What would be the vector for Man?

ж

200

< □

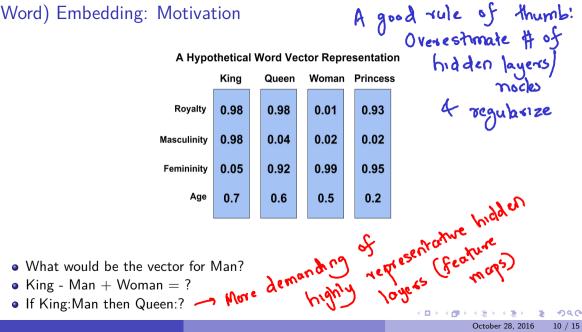
	King	Queen	Woman	Princess
Royalty	0.98	0.98	0.01	0.93
Masculinity	0.98	0.04	0.02	0.02
Femininity	0.05	0.92	0.99	0.95
Age	0.7	0.6	0.5	0.2

#### A Hypothetical Word Vector Representation

- What would be the vector for Man?
- King Man + Woman = ?

200

< 🗆 🕨



	King	Queen	Woman	Princess
Royalty	0.98	0.98	0.01	0.93
Masculinity	0.98	0.04	0.02	0.02
Femininity	0.05	0.92	0.99	0.95
Age	0.7	0.6	0.5	0.2

#### A Hypothetical Word Vector Representation

- What would be the vector for Man? [0.01, 0.98, 0.05, 0.6]'
- King Man + Woman = ? Queen(as vector subtraction and addition give nearly same result as the vector for Queen)
- If King:Man then Queen:? Woman(as vector differences of both pairs give nearly same results)

# (Word) Embedding

- (Word) Embedding: Building a low-dimensional vector representation from corpus of text, which preserves the contextual similarity.
- In simple language, we want an efficient language of numbers which deep neural networks can understand as close as possible to the way we understand words.

500

12 / 15

October 28, 2016

• Training: Continuous Bag of Words Model.

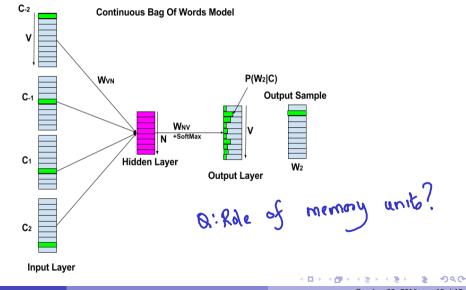
# (Word) Embedding

- (Word) Embedding: Building a low-dimensional vector representation from corpus of text, which preserves the contextual similarity.
- In simple language, we want an efficient language of numbers which deep neural networks can understand as close as possible to the way we understand words.
- Training: Continuous Bag of Words Model.
  - > Take words in one hot encoded form. Take top V frequent words to represent each word.
  - ► Consider the sentence, "... I really liked the *drama*....".
  - Take a N (say 5) word window around each word and train the Neural Network with context words set C as input and the central word w as output.
  - ▶ For the example above use C = {"I", "really", "the" "drama"} as input and W = "liked" as output.

OD 2 word

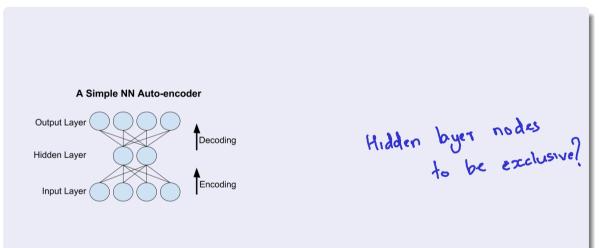
200

## (Word) Embedding: Unsupervised Training

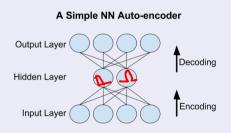


October 28, 2016 13 / 15

#### What if we want Embeddings to be Orthogonal?



#### What if we want Embeddings to be Orthogonal?



- Let X be a random vector and Γ its covariance matrix.
- Principal Component Analysis: Find a rotation of the original coordinate system and express  $\mathbf{X}$  in that system so that each new coordinate expresses as much as possible of the variability in  $\mathbf{X}$  as can be expressed by a linear combination of the *n* entries of  $\mathbf{X}$ . This has application in data transformation. feature discovery, feature selection and so on.

#### Embeddings as Generalization of PCA

- Let X be a random vector and Γ its covariance matrix. Let e₁,..., e_n be the n (normalized) eigenvectors of Γ.
- The *n* principal components of **X** are said to be  $\mathbf{e}_1^T \mathbf{X}$ ,  $\mathbf{e}_2^T \mathbf{X}$ , ...,  $\mathbf{e}_n^T \mathbf{X}$ .
- Let  $p(X_1) = \mathcal{N}(0, 1)$  and  $p(X_2) = \mathcal{N}(0, 1)$  and  $cov(X_1, X_2) = \theta$ . Find all the principal components of the random vector  $\mathbf{X} = [X_1, X_2]^T$ . [Tutorial 10]
- Now, let Y = N(0, Σ) ∈ ℜ^p where Σ = λ²I_{p×p} + α²ones(p, p) for any λ, α ∈ ℜ. Here, I_{p×p} is a p × p identity matrix while ones(p, p) is a p × p matrix of 1's. Find atleast one principal component of Y. [Tutorial 10]