Lecture 26b: Unsupervised Learning: Dimensionality Reduction, Embeddings, PCA etc Instructor: Prof. Ganesh Ramakrishnan

October 28, 2016

1 / 15

Recall: Supervised Feature Selection based on Gain

- S is a sample of training examples, p_{C_i} is proportion of examples with class C_i in S
- Entropy measures impurity of S: $H(S) \equiv \sum_{i=1}^{N} -p_{C_i} \log_2 p_{C_i}$
- Selecting *R* best attributes: Let $\mathcal{R} = \emptyset$
- $Gain(S, \phi_i) =$ expected Gain due to choice of ϕ_i Eg: Gain based on entropy - $Gain(S, \phi_i) \equiv H(S) - \sum_{v \in Values(\phi_i)} \frac{|S_v|}{|S|} H(S_v)$ Do:
 - $\phi^* = \operatorname*{argmax}_{\phi_i \setminus \mathcal{V}} Gain(S, \phi_i)$ • $\mathcal{R} = \mathcal{R} \cup \{\phi^*\}$ Until $|\mathcal{R}| = R$
- Q: Other measures of Gain: Gini Index, Classification Error, etc.

Supervised Feature Subset Selection (Optional)

- One can also Optimally select subset of features using Iterative Hard Thresholding¹ for **Optimal Feature Selection**
- Input: Error function E(w) with gradient oracle to compute $\nabla E(w)$ sparsity level *s*, step-size η :
- $\mathbf{w}^{(0)} = 0$, t = 1
- while not converged do

w^(t+1) = P_s (w^(t) - η∇_wE(w^(t))) //Projection function P_s(.) picks the highest weighted s features as per the update w^(t) - η∇_wE(w^(t)) and sets rest to 0
t = t + 1

- end while
- Output: $\mathbf{w}^{(t)}$

Recap: One Hot Encoding for Characters

- With 3 characters in vocabulary, *a*,*b* and *c*, what would be the best encoding to inform each character occurrence to the network?
- One Hot Encoding: Give a unique key k to each character in alpha-numeric order, and encode each character with a vector of vocabulary size, with a 1 for the k^{th} element, and 0 for all other elements.

Recap: One Hot Encoding for Characters

- With 3 characters in vocabulary, *a*,*b* and *c*, what would be the best encoding to inform each character occurrence to the network?
- One Hot Encoding: Give a unique key k to each character in alpha-numeric order, and encode each character with a vector of vocabulary size, with a 1 for the k^{th} element, and 0 for all other elements.

Encoding Words

How to encode the words for the task of labeling a drama reviews as "liked" or "not liked" ?

- Review 1: The drama was interesting, loved the way each scene was directed. I simply loved everything in the drama.
- Review 2: I had three boring hours. Very boring to watch.
- Review 3: I liked the role each that was assigned to each super star. Especially loved the performance of actor.
- Review 4: Though I hate all the dramas of the director, this one was an exception with lot of entertainment.

・ロット (雪) (日) (日) (日) (日)

Encoding Words

How to encode the words for the task of labeling a "drama' reviews as "liked" or "not liked" ?

- One Hot Encoding of Words.
- Bag Of Words, similar to one hot encoding of characters
 - Use the vocabulary of highly frequent words in reviews.
 - ▶ Use the word frequency in each review instead of "1".

Encoding Words

How to encode the words for the task of labeling a "drama' reviews as "liked" or "not liked" ?

- One Hot Encoding of Words.
- Bag Of Words, similar to one hot encoding of characters
 - Use the vocabulary of highly frequent words in reviews.
 - ▶ Use the word frequency in each review instead of "1".

A review in Bag Of Words Form:-

Limitations of Bag of Words or One Hot Encoding for words

- High Dimension: In real life scenario, the vocabulary size could be huge.
- Lacks Contextual Similarity e.g. liked and loved are contextually similar words.

Dimensionality Reduction techniques.

- Bag of Frequent Words: Contextual similarity is still lacking.
- What happens if one passes a one hot encoded word as both input and output to a NN?

医静脉 医胆管 医胆管

Dimensionality Reduction techniques.

- Bag of Frequent Words: Contextual similarity is still lacking.
- What happens if one passes a one hot encoded word as both input and output to a NN?
- NN Auto-encoder: Output has same form as input. We extract the encoded vector from the hidden layer.

A Simple NN Auto-encoder

After unsupervised training with lot of online data, can a machine answer the questions like:-

- King Man + Woman = ?
- If France:Paris, then Japan:?

	King	Queen	Woman	Princess
Royalty	0.98	0.98	0.01	0.93
Masculinity	0.98	0.04	0.02	0.02
Femininity	0.05	0.92	0.99	0.95
Age	0.7	0.6	0.5	0.2

A Hypothetical Word Vector Representation

3

・ロト ・ 一下・ ・ ヨト・

	King	Queen	Woman	Princess
Royalty	0.98	0.98	0.01	0.93
Masculinity	0.98	0.04	0.02	0.02
Femininity	0.05	0.92	0.99	0.95
Age	0.7	0.6	0.5	0.2

A Hypothetical Word Vector Representation

• What would be the vector for Man?

э

Image: A match a ma

	King	Queen	Woman	Princess
Royalty	0.98	0.98	0.01	0.93
Masculinity	0.98	0.04	0.02	0.02
Femininity	0.05	0.92	0.99	0.95
Age	0.7	0.6	0.5	0.2

A Hypothetical Word Vector Representation

- What would be the vector for Man?
- King Man + Woman = ?

э

	King	Queen	Woman	Princess
Royalty	0.98	0.98	0.01	0.93
Masculinity	0.98	0.04	0.02	0.02
Femininity	0.05	0.92	0.99	0.95
Age	0.7	0.6	0.5	0.2

A Hypothetical Word Vector Representation

- What would be the vector for Man?
- King Man + Woman = ?
- If King:Man then Queen:?

э

Woman	Princess
0.01	0.93
0.02	0.02
0.99	0.95
0.5	0.2
	0.01 0.02 0.99

A Hypothetical Word Vector Representation

- What would be the vector for Man? [0.01, 0.98, 0.05, 0.6]'
- King Man + Woman = ? Queen(as vector subtraction and addition give nearly same result as the vector for Queen)
- If King:Man then Queen:? Woman(as vector differences of both pairs give nearly same results)

(Word) Embedding

- (Word) Embedding: Building a low-dimensional vector representation from corpus of text, which preserves the contextual similarity.
- In simple language, we want an efficient language of numbers which deep neural networks can understand as close as possible to the way we understand words.

October 28, 2016

12 / 15

• Training: Continuous Bag of Words Model.

(Word) Embedding

- (Word) Embedding: Building a low-dimensional vector representation from corpus of text, which preserves the contextual similarity.
- In simple language, we want an efficient language of numbers which deep neural networks can understand as close as possible to the way we understand words.
- Training: Continuous Bag of Words Model.
 - > Take words in one hot encoded form. Take top V frequent words to represent each word.
 - Consider the sentence, "... I really liked the drama....".
 - ► Take a N (say 5) word window around each word and train the Neural Network with context words set C as input and the central word w as output.
 - ▶ For the example above use C = {"I", "really", "the" "drama"} as input and W = "liked" as output.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うらつ

(Word) Embedding: Unsupervised Training

October 28, 2016 13 / 15

What if we want Embeddings to be Orthogonal?

What if we want Embeddings to be Orthogonal?

- Let X be a random vector and Γ its covariance matrix.
- Principal Component Analysis: Find a rotation of the original coordinate system and express \mathbf{X} in that system so that each new coordinate expresses as much as possible of the variability in \mathbf{X} as can be expressed by a linear combination of the *n* entries of \mathbf{X} . This has application in data transformation. feature discovery, feature selection and so on.

Embeddings as Generalization of PCA

- Let X be a random vector and Γ its covariance matrix. Let e₁,..., e_n be the n (normalized) eigenvectors of Γ.
- The *n* principal components of **X** are said to be $\mathbf{e}_1^T \mathbf{X}$, $\mathbf{e}_2^T \mathbf{X}$, ..., $\mathbf{e}_n^T \mathbf{X}$.
- Let $p(X_1) = \mathcal{N}(0, 1)$ and $p(X_2) = \mathcal{N}(0, 1)$ and $cov(X_1, X_2) = \theta$. Find all the principal components of the random vector $\mathbf{X} = [X_1, X_2]^T$. [Tutorial 10]
- Now, let Y = N(0, Σ) ∈ ℜ^p where Σ = λ²I_{p×p} + α²ones(p, p) for any λ, α ∈ ℜ. Here, I_{p×p} is a p × p identity matrix while ones(p, p) is a p × p matrix of 1's. Find atleast one principal component of Y. [Tutorial 10]

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うらつ