Lecture 26b: Unsupervised Learning: Dimensionality Reduction, Embeddings, PCA etc

Instructor: Prof. Ganesh Ramakrishnan

Recall: Supervised Feature Selection based on Gain

- S is a sample of training examples, $p_{C_{i}}$ is proportion of examples with class C_{i} in S
- Entropy measures impurity of $S: H(S) \equiv \sum_{i=1}^{K}-p_{C_{i}} \log _{2} p_{C_{i}}$
- Selecting R best attributes: Let $\mathcal{R}=\emptyset$
- $\operatorname{Gain}\left(S, \phi_{i}\right)=$ expected Gain due to choice of ϕ_{i} Eg: Gain based on entropy $\operatorname{Gain}\left(S, \phi_{i}\right) \equiv H(S)-\sum_{v \in \operatorname{Values}\left(\phi_{i}\right)} \frac{\left|S_{v}\right|}{|S|} H\left(S_{v}\right)$
Do:
(1) $\phi^{*}=\underset{\phi}{\operatorname{argmax}} \operatorname{Gain}\left(S, \phi_{i}\right)$
(2) $\mathcal{R}=\mathcal{R} \cup\left\{\phi^{*}\right\}$

Until $|\mathcal{R}|=R$
Q: Other measures of Gain: Gini Index, Classification Error, etc.

Supervised Feature Subset Selection (Optional)

- One can also Optimally select subset of features using Iterative Hard Thresholding ${ }^{1}$ for Optimal Feature Selection
- Input: Error function $\mathbf{E}(\mathbf{w})$ with gradient oracle to compute $\nabla \mathbf{E}(\mathbf{w})$ sparsity level s, step-size η :
- $\mathbf{w}^{(0)}=0, t=1$
- while not converged do
(1) $\mathbf{w}^{(t+1)}=P_{s}\left(\mathbf{w}^{(t)}-\eta \nabla_{\mathbf{w}} \mathbf{E}\left(\mathbf{w}^{(t)}\right)\right) / /$ Projection function $P_{s}($.$) picks the highest weighted s$ features as per the update $\mathbf{w}^{(t)}-\eta \nabla_{\mathbf{w}} \mathbf{E}\left(\mathbf{w}^{(t)}\right)$ and sets rest to 0
(2) $t=t+1$
- end while
- Output: $\mathbf{w}^{(t)}$

[^0]
Recap: One Hot Encoding for Characters

- With 3 characters in vocabulary, a, b and c, what would be the best encoding to inform each character occurrence to the network?
- One Hot Encoding: Give a unique key k to each character in alpha-numeric order, and encode each character with a vector of vocabulary size, with a 1 for the $k^{\text {th }}$ element, and 0 for all other elements.

Recap: One Hot Encoding for Characters

- With 3 characters in vocabulary, a, b and c, what would be the best encoding to inform each character occurrence to the network?
- One Hot Encoding: Give a unique key k to each character in alpha-numeric order, and encode each character with a vector of vocabulary size, with a 1 for the $k^{\text {th }}$ element, and 0 for all other elements.

c	a	b
c		
1	0	0
0	1	0
0	0	1

Encoding Words

How to encode the words for the task of labeling a drama reviews as "liked" or "not liked" ?

- Review 1: The drama was interesting, loved the way each scene was directed. I simply loved everything in the drama.
- Review 2: I had three boring hours. Very boring to watch.
- Review 3: I liked the role each that was assigned to each super star. Especially loved the performance of actor.
- Review 4: Though I hate all the dramas of the director, this one was an exception with lot of entertainment.

Encoding Words

How to encode the words for the task of labeling a "drama' reviews as "liked" or "not liked" ?

- One Hot Encoding of Words.
- Bag Of Words, similar to one hot encoding of characters
- Use the vocabulary of highly frequent words in reviews.
- Use the word frequency in each review instead of "1".

Encoding Words

How to encode the words for the task of labeling a "drama' reviews as "liked" or "not liked" ?

- One Hot Encoding of Words.
- Bag Of Words, similar to one hot encoding of characters
- Use the vocabulary of highly frequent words in reviews.
- Use the word frequency in each review instead of " 1 ".

A review in Bag Of Words Form:-

loved	2
boring	1
liked	1
hate	0
entertainment	3

(Word) Embedding: Motivation

Limitations of Bag of Words or One Hot Encoding for words

- High Dimension: In real life scenario, the vocabulary size could be huge.
- Lacks Contextual Similarity - e.g. liked and loved are contextually similar words.

(Word) Embedding: Motivation

Dimensionality Reduction techniques.

- Bag of Frequent Words: Contextual similarity is still lacking.
- What happens if one passes a one hot encoded word as both input and output to a NN?

(Word) Embedding: Motivation

Dimensionality Reduction techniques.

- Bag of Frequent Words: Contextual similarity is still lacking.
- What happens if one passes a one hot encoded word as both input and output to a NN?
- NN Auto-encoder: Output has same form as input. We extract the encoded vector from the hidden layer.

A Simple NN Auto-encoder

(Word) Embedding: Motivation

After unsupervised training with lot of online data, can a machine answer the questions like:-

- King - Man + Woman = ?
- If France:Paris, then Japan:?

(Word) Embedding: Motivation

	King	Queen	Woman	Princess
Royalty	0.98	0.98	0.01	0.93
Masculinity	0.98	0.04	0.02	0.02
Femininity	0.05	0.92	0.99	0.95
Age	0.7	0.6	0.5	0.2

(Word) Embedding: Motivation

	King	Queen	Woman	Princess
Royalty	0.98	0.98	0.01	0.93
Masculinity	0.98	0.04	0.02	0.02
Femininity	0.05	0.92	0.99	0.95
Age	0.7	0.6	0.5	0.2

- What would be the vector for Man?

(Word) Embedding: Motivation

	King	Queen	Woman	Princess
Royalty	0.98	0.98	0.01	0.93
Masculinity	0.98	0.04	0.02	0.02
Femininity	0.05	0.92	0.99	0.95
Age	0.7	0.6	0.5	0.2

- What would be the vector for Man?
- King - Man + Woman = ?

(Word) Embedding: Motivation

	King	Queen	Woman	Princess
Royalty	0.98	0.98	0.01	0.93
Masculinity	0.98	0.04	0.02	0.02
Femininity	0.05	0.92	0.99	0.95
Age	0.7	0.6	0.5	0.2

- What would be the vector for Man?
- King - Man + Woman = ?
- If King:Man then Queen:?

(Word) Embedding: Motivation

A Hypothetical Word Vector Representation

	King	Queen	Woman	Princess
Royalty	0.98	0.98	0.01	0.93
Masculinity	0.98	0.04	0.02	0.02
Femininity	0.05	0.92	0.99	0.95
Age	0.7	0.6	0.5	0.2

- What would be the vector for Man? [0.01, 0.98, 0.05, 0.6]'
- King - Man + Woman = ? Queen(as vector subtraction and addition give nearly same result as the vector for Queen)
- If King:Man then Queen:? Woman(as vector differences of both pairs give nearly same resulta)

(Word) Embedding

- (Word) Embedding: Building a low-dimensional vector representation from corpus of text, which preserves the contextual similarity.
- In simple language, we want an efficient language of numbers which deep neural networks can understand as close as possible to the way we understand words.
- Training: Continuous Bag of Words Model.

(Word) Embedding

- (Word) Embedding: Building a low-dimensional vector representation from corpus of text, which preserves the contextual similarity.
- In simple language, we want an efficient language of numbers which deep neural networks can understand as close as possible to the way we understand words.
- Training: Continuous Bag of Words Model.
- Take words in one hot encoded form. Take top V frequent words to represent each word.
- Consider the sentence, "... I really liked the drama....".
- Take a N (say 5) word window around each word and train the Neural Network with context words set \mathcal{C} as input and the central word w as output.
- For the example above use $\mathrm{C}=\{$ " 1 ", "really", "the" "drama" $\}$ as input and $\mathrm{W}=$ "liked" as output.

(Word) Embedding: Unsupervised Training

What if we want Embeddings to be Orthogonal?

A Simple NN Auto-encoder

What if we want Embeddings to be Orthogonal?

- Let \mathbf{X} be a random vector and Γ its covariance matrix.
- Principal Component Analysis: Find a rotation of the original coordinate system and express \mathbf{X} in that system so that each new coordinate expresses as much as possible of the variability in \mathbf{X} as can be expressed by a linear combination of the n entries of \mathbf{X}. This has application in data transformation, feature discovery, feature selection and so on.

Embeddings as Generalization of PCA

- Let \mathbf{X} be a random vector and Γ its covariance matrix. Let $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ be the n (normalized) eigenvectors of Γ.
- The n principal components of \mathbf{X} are said to be $\mathbf{e}_{1}^{T} \mathbf{X}, \mathbf{e}_{2}^{T} \mathbf{X}, \ldots, \mathbf{e}_{n}^{T} \mathbf{X}$.
(1) Let $p\left(X_{1}\right)=\mathcal{N}(0,1)$ and $p\left(X_{2}\right)=\mathcal{N}(0,1)$ and $\operatorname{cov}\left(X_{1}, X_{2}\right)=\theta$. Find all the principal components of the random vector $\mathbf{X}=\left[X_{1}, X_{2}\right]^{T}$. [Tutorial 10]
(2) Now, let $\mathbf{Y}=\mathcal{N}(\mathbf{0}, \Sigma) \in \Re^{p}$ where $\Sigma=\lambda^{2} I_{p \times p}+\alpha^{2}$ ones (p, p) for any $\lambda, \alpha \in \Re$. Here, $I_{p \times p}$ is a $p \times p$ identity matrix while ones (p, p) is a $p \times p$ matrix of 1 's. Find atleast one principal component of \mathbf{Y}. [Tutorial 10]

[^0]: ${ }^{1}$ https://arxiv.org/pdf/1410.5137v2.pdf

