Lecture 27: More Unsupervised Learning: Generative Models, Mixture of Gaussians, EM Algorithm, K-Means etc

Instructor: Prof. Ganesh Ramakrishnan

Discriminative & Generative Classification Models

How likely class Cz is given point \$\phi(\alpha) ? This is of white interest

- Goal in classification: Assign an input x with feature vector $\phi(\mathbf{x}) \in \Re^m$ to one of K discrete classes C_k where $k \in 1, ..., K$.
- ightharpoonup Discriminative Models (so far): Directly model $P(C_i|\phi(\mathbf{x}))$. E.g.: Logistic Regression and Dominant classification models Neural Networks
- Generative Models: Model $P(\phi(\mathbf{x})|C_i)$ for each i
 - ▶ Continuous Attributes $\Rightarrow P(\phi(\mathbf{x})|C_i) \sim \mathcal{N}(\mu_i, \Sigma_i)$ for Gaussian Discriminant Analysis
- Discrete Attributes $\Rightarrow P(\phi(\mathbf{x})|C_i) \sim Nunt(p_1, \dots, p_m)$.

 Note the posterior using Bayes Rule asymax $P(C_i|\phi(n)) = P(\phi(n)|C_i) P(C_i) P(\phi(n))$.

 How likely point $\phi(x)$ is given class C_i ? Indirect for classification.

¹Tutorial 10.

Discriminative & Generative Classification Models

- $\overline{}$ Goal in classification: Assign an input x with feature vector $\phi(\mathbf{x}) \in \Re^m$ to one of Kdiscrete classes C_k where $k \in 1, ..., K$.
- Discriminative Models (so far): Directly model $P(C_i|\phi(\mathbf{x}))$. E.g.: Logistic Regression and
- Continuous Attributes $\Rightarrow P(\phi(\mathbf{x})|C_i)$ for each iContinuous Attributes $\Rightarrow P(\phi(\mathbf{x})|C_i) \sim \mathcal{N}(\mu_i, \Sigma_i)$ for Gaussian Discriminant Analysis

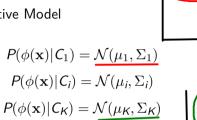
 Discrete Attributes $\Rightarrow P(\phi(\mathbf{x})|C_i) \sim Mult(p_1, \ldots, p_m)$ for multivariate Bernoulli Naive Bayes

 Obtain the posterior using Bayes Rule $P(C_i|\phi(\mathbf{x})) = \frac{P(\phi(\mathbf{x})|C_i)P(C_i)}{P(C_i)}$ Obtain the posterior using Bayes Rule $P(C_i|\phi(\mathbf{x})) = \frac{P(\phi(\mathbf{x})|C_i)P(C_i)}{\sum P(\phi(\mathbf{x})|C_j)P(C_j)}$

¹Tutorial 10.

Gaussian (Quadratic) Discriminant Analysis

- A canonical example of Generative Model
- Example K class case:



- **3** Assumption: $\phi(\mathbf{x})$ is generated using **exactly one** $\mathcal{N}(\mu_i, \Sigma_i)$
- In the case of K=2, decision surface will be $\{\phi(\mathbf{x}) \mid P(C_1|\phi(\mathbf{x})) = P(C_2|\phi(\mathbf{x}))\}$. The surface will be **quadratic**
- Hence, this classifier is also referred to as **Quadratic Discriminant** Analysis (QDA)

Gaussian (Quadratic) Discriminant Analysis²

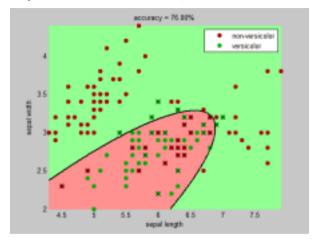


Figure: Illustration of Quadratic Discriminant Analysis

4 / 64

²http://i.stack.imgur.com/OKYBH.png

Why Quadratic Separating Surface?

$$\phi$$

• If $\phi(\mathbf{x}) \sim \mathcal{N}(\mu_i, \Sigma_i)$ (where $\phi(\mathbf{x}) \in \Re^m$) then

$$\Pr(\boldsymbol{\zeta_i}) \ \underline{\Pr(\phi(\mathbf{x}) \mid C_i)} = \frac{1}{(2\pi)^{\frac{m}{2}} |\Sigma_i|^{\frac{1}{2}}} \exp \frac{-(\phi(\mathbf{x}) - \mu_i)^T \Sigma_i^{-1} (\phi(\mathbf{x}) - \mu_i)}{2} \Pr(\boldsymbol{\zeta_i})$$

• So, the separating surface is $\phi(\mathbf{x})$ such that $\{\phi(\mathbf{x}) \mid P(C_1|\phi(\mathbf{x})) = P(C_2|\phi(\mathbf{x}))\}$ that is, $\{\phi(\mathbf{x}) \mid P(\phi(\mathbf{x}) \mid C_1)P(C_1) = P(\phi(\mathbf{x}) \mid C_2)P(C_2)\}$ that is, after taking logs, $\phi(\mathbf{x})$ such that

$$\log \left(\mathcal{R}(\phi(x) | C_1) \mathcal{P}_{\mathcal{C}(i)} \right) = \log \left(\mathcal{R}(\phi(x) | C_2) \mathcal{R}(C_2) \right)$$

$$(\phi(x) - U_1)^T \mathcal{Z}_{i}^{-1}(\phi(x) - M_1) - (\phi(x) - M_2)^T \mathcal{Z}_{i}^{-1}(\phi(x) - M_2) + b$$

$$LHS \text{ in derms of } \phi(x) \text{ independent of } Movember 7, 2(16) a) / 64$$

Why Quadratic Separating Surface?

• If $\phi(\mathbf{x}) \sim \mathcal{N}(\mu_i, \Sigma_i)$ (where $\phi(\mathbf{x}) \in \Re^m$) then

$$\Pr(\phi(\mathbf{x}) \mid C_i) = \frac{1}{(2\pi)^{\frac{m}{2}} |\Sigma_i|^{\frac{1}{2}}} exp \frac{-(\phi(\mathbf{x}) - \mu_i)^T \Sigma_i^{-1} (\phi(\mathbf{x}) - \mu_i)}{2}$$

• So, the separating surface is $\phi(\mathbf{x})$ such that $\{\phi(\mathbf{x}) \mid P(C_1|\phi(\mathbf{x})) = P(C_2|\phi(\mathbf{x}))\}$ that is, $\{\phi(\mathbf{x}) \mid P(\phi(\mathbf{x}) \mid C_1)P(C_1) = P(\phi(\mathbf{x}) \mid C_2)P(C_2)\}$ that is, after taking logs, $\phi(\mathbf{x})$ such that

$$-(\phi(\mathbf{x}) - \mu_1)^T \Sigma_1^{-1} (\phi(\mathbf{x}) - \mu_1) + (\phi(\mathbf{x}) - \mu_2)^T \Sigma_2^{-1} (\phi(\mathbf{x}) - \mu_2) = b$$

where b contains terms independent of $\phi(\mathbf{x})$.

• This is indeed a quadratic equation!

Maximum Likelihood estimates for QDA

Assuming test point x belongs to exactly one class, \Rightarrow find C^* such that,

$$C^* = \underset{i}{\operatorname{argmax}} \log[P(\mathbf{x}|C_i)P(C_i)] = \underset{i}{\operatorname{argmax}} \log[\mathcal{N}(\mathbf{x}|\mu_i, \Sigma_i)P(C_i)]$$
 (1)

We can obtain MLE $\hat{\mu}_i$, $\hat{\Sigma}_i$ and $\widehat{\Pr}(C_i)$ by extending derivations for Multivariate Gaussian and use in (2)

• Setting $\nabla_{\mu_i} LL = 0$, and $\nabla_{\Sigma_i} LL = 0$:

$$\hat{Z}_{i} = \frac{1}{m_{i}} \sum_{\alpha \in C_{i}} (\phi(\alpha) - \hat{u}_{i}) (\phi(\alpha) - \hat{u}_{i})^{T}$$

³Recap from lecture-06-unannotated.pdf as well as extra (optional) accompanying this lecture

Maximum Likelihood estimates for QDA

Assuming test point ${\bf x}$ belongs to exactly one class, \Rightarrow find ${\it C}^*$ such that,

$$C^* = \underset{i}{\operatorname{argmax}} \log[P(\mathbf{x}|C_i)P(C_i)] = \underset{i}{\operatorname{argmax}} \log[\mathcal{N}(\mathbf{x}|\mu_i, \Sigma_i)P(C_i)]$$
 (1)

We can obtain MLE $\hat{\mu}_i$, $\hat{\Sigma}_i$ and $\widehat{\Pr}(C_i)$ by extending³ derivations for Multivariate Gaussian and use in (2)

• Setting $\nabla_{\mu_i} \mathcal{L} \mathcal{L} = 0$, and $\nabla_{\Sigma_i} \mathcal{L} \mathcal{L} = 0$: $\underline{\hat{\mu}_i} = \frac{1}{m_i} \sum_{j=1}^{m_i} \phi(\mathbf{x}_j^i)$ and

$$\underline{\hat{\Sigma}_i} = \frac{1}{m_i} \sum_{i=1}^{m_i} (\phi(\mathbf{x}_j^i) - \hat{\mu}_i) (\phi(\mathbf{x}_j^i) - \hat{\mu}_i)^T \dots \text{called the empirical co-variance matrix in statistics}$$

- Also setting $\nabla_{\Pr(C_i)} LL = 0$, $\widehat{\Pr(C_i)} = \frac{m_i}{\sum_{j=1}^K m_j}$
- $\hat{\mu}_i \sim N(\mu_i, \Sigma_i)$ and since $\mathsf{E}[\hat{\mu}_i] = \mu_i$, $\hat{\mu}_i$ is an unbiased estimator. [Extra optional slides]
- Naive Bayes Classifier: Each Σ_i assumed to be diagonal

³Recap from lecture-06-unannotated.pdf as well as extra (optional) accompanying this lecture

Bayesian estimation for QDA (follows thru from lecture 6)

Assuming test point x belongs to exactly one class, \Rightarrow find C^* such that,

$$C^* = \underset{i}{\operatorname{argmax}} \log[P(\mathbf{x}|C_i)P(C_i)] = \underset{i}{\operatorname{argmax}} \log[\mathcal{N}(\mathbf{x}|\mu_i, \Sigma_i)P(C_i)]$$
 (2)

We can obtain MAP $\hat{\mu}_i$, $\hat{\Sigma}_i$ and $\widehat{Pr}(C_i)$ by extending derivations for Multivariate Gaussian and use in (2)

• Extending to Bayesian setting⁵ for multivariate case with fixed (non-probabilistic) Σ_i

Extending to Bayesian settings for multivariate case with fixed (non-probabilisting)
$$\phi(\mathbf{x}\mid C_i) \sim \mathcal{N}(\mu_i, \Sigma_i), \ \mu_i \sim \mathcal{N}(\mu_i^0, \Sigma_i^0) \ \Rightarrow \Pr(\mu_i|\mathcal{D}) = \mathcal{N}(\mu_i^{m_i}, \Sigma_i^{m_i})$$

$$(\Sigma_i^{m_i})^{-1} = \left(\Sigma_i^0\right)^{-1} + m_i(\Sigma_i)^{-1}$$

$$(\Sigma_i^{m_i})^{-1} \mu_i^{m_i} = m_i(\Sigma_i)^{-1} \hat{\mu}_{mle} + \left(\Sigma_i^0\right)^{-1} \mu_i^0$$
 MAP estimates $\mu_i^{m_i}$ and $\Sigma_i^{m_i}$ are obtained by solving above linear system.

• As before, $\widehat{\Pr}(C_i) = \frac{m_i}{\sum_{i=1}^K m_i}$

⁴Recap from lecture-06-unannotated.pdf as well as extra (optional) accompanying this lecture

 $^{^5}$ https://en.wikipedia.org/wiki/Multivariate_normal_distribution#Bayesian_inference

Tutorial 10

• Suppose, in our generative model, the points from each class are generated using a multivariate Gaussian with a different mean μ_i for each class C_i , but a shared covariance matrix Σ :

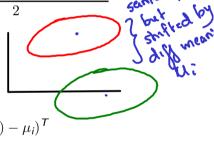
$$P(\phi(\mathbf{x})|C_i) = \frac{1}{(2\pi)^{\frac{n}{2}}|\Sigma|^{\frac{1}{2}}} \exp \frac{-(\phi(\mathbf{x}) - \mu_i)^T \Sigma^{-1}(\phi(\mathbf{x}) - \mu_i)}{2}$$

• Show that the Maximum Likelihood estimates are:

$$\hat{\mu}_i = \frac{1}{m_i} \sum_{\mathbf{x} \in C_i} \phi(\mathbf{x})$$

$$\hat{\Sigma} = \frac{1}{m} \sum_{i=1}^{K} \sum_{\mathbf{x} \in C_i} (\phi(\mathbf{x}) - \mu_i) (\phi(\mathbf{x}) - \mu_i)^T$$

 In fact, this has a Linear separating surface and is therefore called Linear Discriminant Analysis (LDA)



Tutorial 10: Linear Discriminant Analysis⁶

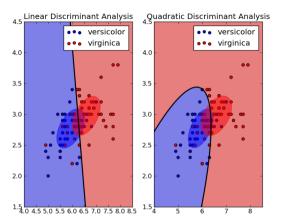
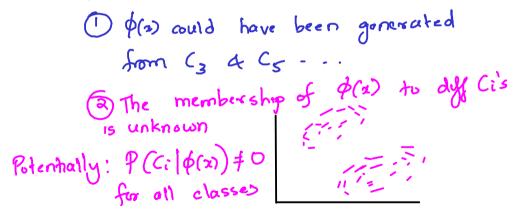


Figure: Illustration of Linear vs. Quadratic Discriminant Analysis

Unsupervised Mixture of Gaussians

- **1** Recall assumption: $\phi(\mathbf{x})$ is generated using **exactly one** $\mathcal{N}(\mu_i, \Sigma_i)$
- What if this assumption was violated?



Unsupervised Mixture of Gaussians

- **1** Recall assumption: $\phi(\mathbf{x})$ is generated using **exactly one** $\mathcal{N}(\mu_i, \Sigma_i)$
- What if this assumption was violated?
 - ▶ What if an example $\phi(\mathbf{x})$ belongs to multiple classes (Gaussians)?

$$\begin{split} \Pr(\phi(\mathbf{x})|\mathcal{C}_p) &= \mathcal{N}(\mu_p, \Sigma_p) \\ \Pr(\phi(\mathbf{x})|\mathcal{C}_q) &= \mathcal{N}(\phi(\mathbf{x}) \mid \mu_q, \Sigma_q) \end{split}$$

What if the membership of an example to the different classes is not known?

$$\Pr(\phi(\mathbf{x})) = \sum_{i=1}^{K} \Pr(\phi(\mathbf{x}), C = z_i) = \sum_{i=1}^{K} \Pr(C = z_i) \mathcal{N}(\phi(\mathbf{x}), \mu_i, \Sigma_i)$$

$$\Pr(\phi(\mathbf{x})) = \sum_{i=1}^{K} \Pr(\phi(\mathbf{x}), C = z_i) = \sum_{i=1}^{K} \Pr(C = z_i) \mathcal{N}(\phi(\mathbf{x}), \mu_i, \Sigma_i)$$

$$\Pr(C = z_i) \Pr(\phi(\mathbf{x}) \mid Z_i)$$

Unsupervised Mixture

- $Z \in \{z_1, z_2, \dots, z_k\}$: Multinomial variable indicating mixture component & K = number of (hidden) classes or mixture components
- $\phi(\mathbf{x})$: Random variable (vector), with distribution specified, conditioned on different values z_i of Z

$$\Pr(\phi(\mathbf{x}) \mid z_i; \theta_i) \sim f_i(\mathbf{x}; \theta_i) \rightarrow e_j$$

The finite mixture model is defined as

⁷Proportion of the population in subpopulation i.

Unsupervised Mixture

- $Z \in \{z_1, z_2, \dots, z_k\}$: Multinomial variable indicating mixture component & K = number of (hidden) classes or mixture components
- $\phi(\mathbf{x})$: Random variable (vector), with distribution specified, conditioned on different values z_i of Z

$$\Pr(\phi(\mathbf{x}) \mid \mathbf{z}_i; \theta_i) \sim f_i(\mathbf{x}; \theta_i)$$

• The finite mixture model is defined as

$$Pr(\phi(\mathbf{x})) = \sum_{i=1}^{K} \underbrace{Pr(z_i)f_i(\mathbf{x};\theta_i)} = \sum_{i=1}^{K} \pi_i f_i(\mathbf{x};\theta_i)$$

 $\pi = [\pi_1, \pi_2, \dots, \pi_k]$ and $\theta = [\theta_1, \theta_2, \dots, \theta_k]$ are the paramaters of the mixture model, with a fixed value of k.

• Quantities $Pr(z_i) = \pi_i$ are mixing weights⁷

⁷Proportion of the population in subpopulation i.

Example: Gaussian Mixture Model (GMM)

• The density of each mixture component is Gaussian with $\theta_i = (\mu_i, \Sigma_i)$.

$$f_i(\phi(\mathbf{x}); \theta_i) = \mathcal{N}(\phi(\mathbf{x}) \mid \mu_i, \Sigma_i)$$

ullet Pr $(\phi(\mathbf{x}))$ is then called a mixture of Gaussian

$$\Pr(\phi(\mathbf{x}) \mid z_i; \theta_i) \sim f_i(x; \theta_i)$$

Gaussian Mixture Model (GMM) is itself NOT a Gaussian!

• Supervised setting: We learnt (μ_i, Σ_i) using Maximum Likelihood/MAP when a (unique) z was observed for an x

• Unsupervised setting: Learning parameters $\theta_i = (\mu_i, \Sigma_i)$ in the presence of incomplete data (only instances of $\phi(\mathbf{x})$)

Σ_i)

Roducts are generally

products are por

but sums are Nor

Z π; N(φ(α); μ; Σ;)

12 / 64

Parameter Estimation for Mixture Models⁸

• Decomposition of the joint distribution

Mixture Models

(i.e.(0,1) = Note:
$$\sum log = log T$$

i.e. distribution $\int \frac{f(z \cdot x^2)}{f(x)} = \Pr(z) \Pr(\phi(x) \mid z, \theta)$

The (log) likelihood to be maximized:

$$LL(\pi, \theta; \phi(\mathbf{x})) = \frac{1}{m} \sum_{j=1}^{m} \log \Pr\left(\phi\left(\mathbf{x}^{(j)}\right); \theta\right) = \frac{1}{m} \sum_{j=1}^{m} \log \left[\sum_{l=1}^{K} \pi_{l} f_{l}\left(\phi\left(\mathbf{x}^{(j)}\right); \theta_{l}\right)\right]$$
s.t. $\pi_{l} \geq 0$ and $\sum_{l=1}^{K} \pi_{l} = 1$.

• Problem:

⁸Section 7.8 onwards of cs725/notes/classNotes/misc/CaseStudyWithProbabilisticModels.pdf 200

Parameter Estimation for Mixture Models⁸

• Decomposition of the joint distribution

$$Pr(\phi(\mathbf{x}), z; \theta) = Pr(z) Pr(\phi(\mathbf{x}) \mid z, \theta)$$

• The (log) likelihood to be maximized:

$$LL(\pi, \theta; \phi(\mathbf{x})) = \frac{1}{m} \sum_{j=1}^{m} \log \Pr\left(\phi\left(\mathbf{x}^{(j)}\right); \theta\right) = \frac{1}{m} \sum_{j=1}^{m} \log \left[\sum_{l=1}^{K} \pi_{l} f_{l}\left(\phi\left(\mathbf{x}^{(j)}\right); \theta_{l}\right)\right]$$

s.t.
$$\pi_l \ge 0$$
 and $\sum_{l=1}^{K} \pi_l = 1$.

s.t. $\pi_l \ge 0$ and $\sum_{l=1}^{N} \pi_l = 1$.

Problem: log cannot be distributed over a summation!!

Provide infusion

⁸Section 7.8 onwards of cs725/notes/classNotes/misc/CaseStudyWithProbabilisticModels.pdf 🗔 🛊 🕒

Parameter Estimation for Gaussian Mixture Models

- Need to maximize $LL(\pi, \mu, \Sigma; \phi(\mathbf{x})) = \frac{1}{m} \sum_{j=1}^{m} \log \left[\sum_{l=1}^{K} \pi_{l} \mathcal{N}\left(\phi\left(\mathbf{x}^{(j)}\right); \mu_{l}, \Sigma_{l}\right) \right]$ s.t $\pi_{i} \geq 0$ and $\sum_{l=1}^{K} \pi_{l} = 1$.
- Write down the necessary optimality conditions for this maximization problem, subject to its associated inequality and linear equality constraints
- Setting gradient w.r.t each μ_i to 0 we get:

$$\sum_{j=1}^{N} \frac{1}{\sum_{\ell=1}^{N} \pi_{\ell} N(\phi(x^{j})_{j} u_{\ell}, \sum_{\ell})} \pi_{i} N(\phi(x^{j})_{j} u_{\ell}, \sum_{\ell}) \pi_{i} N(\phi(x^{j})_{j$$

Parameter Estimation for Gaussian Mixture Models

- Need to maximize $LL(\pi, \mu, \Sigma; \phi(\mathbf{x})) = \frac{1}{m} \sum_{j=1}^{m} \log \left[\sum_{l=1}^{K} \pi_{l} \mathcal{N}\left(\phi\left(\mathbf{x}^{(j)}\right); \mu_{l}, \Sigma_{l}\right) \right] \text{ s.t } \pi_{i} \geq 0$
 - and $\sum_{I=1}^K \pi_I = 1$.
- Write down the necessary optimality conditions for this maximization problem, subject to its associated inequality and linear equality constraints
- Setting gradient w.r.t each μ_i to 0 we get:

$$\sum_{j=1}^{m} \frac{\pi_{i} \mathcal{N}\left(\phi\left(\mathbf{x}^{(j)}\right); \mu_{i}, \Sigma_{i}\right)}{\left[\sum_{l=1}^{K} \pi_{l} \mathcal{N}\left(\phi\left(\mathbf{x}^{(j)}\right); \mu_{l}, \Sigma_{l}\right)\right]} \Sigma_{i}^{-1}\left(\phi\left(\mathbf{x}^{(j)}\right) - \mu_{i}\right) = 0$$

 Σ_i^{-1} is non-singular and therefore remaining expression must be 0.

The EM Trick

$$\sum_{j=1}^{m} \frac{\pi_{i} \mathcal{N}\left(\phi\left(\mathbf{x}^{(j)}\right); \mu_{i}, \Sigma_{i}\right)}{\left[\sum_{l=1}^{K} \pi_{l} \mathcal{N}\left(\phi\left(\mathbf{x}^{(j)}\right); \mu_{l}, \Sigma_{l}\right)\right]} \left(\phi\left(\mathbf{x}^{(j)}\right) - \mu_{i}\right) = 0$$
(3)

• No way to solve this in closed form to get a clean MLE estimate for μ_i !

$$\frac{P(c=z_i)R(\phi(x^i)|z_i)}{\sum_{e} R(c=z_i)R(\phi(x^i)|z_e)} = R(c=z_i|\phi(z^i))$$

$$\frac{\sum_{e} R(c=z_i)R(\phi(x^i)|z_e)}{\sum_{e} R(c=z_i)R(\phi(x^i)|z_e)} = R(c=z_i|\phi(z^i))$$

$$\frac{\sum_{e} R(c=z_i)R(\phi(x^i)|z_e)}{\sum_{e} R(c=z_i)R(\phi(x^i)|z_e)} = R(c=z_i|\phi(z^i))$$

The EM Trick

$$\sum_{j=1}^{m} \left(\frac{\pi_{i} \mathcal{N}\left(\phi\left(\mathbf{x}^{(j)}\right); \mu_{i}, \Sigma_{i}\right)}{\sum_{l=1}^{K} \pi_{l} \mathcal{N}\left(\phi\left(\mathbf{x}^{(j)}\right); \mu_{l}, \Sigma_{l}\right)} \left(\phi\left(\mathbf{x}^{(j)}\right) - \mu_{i}\right) = 0$$

$$\sum_{l=1}^{K} \pi_{l} \mathcal{N}\left(\phi\left(\mathbf{x}^{(j)}\right); \mu_{l}, \Sigma_{l}\right) \left(\phi\left(\mathbf{x}^{(j)}\right) - \mu_{i}\right) = 0$$
Recall: Pr(Z₁| $\phi(\mathbf{x})$)
Problem to get a clean MLE estimate for μ_{i} ! Processing the problem of the p

• No way to solve this in closed form to get a clean MLE estimate for μ_i !

• Note that
$$\frac{\pi_{i}\mathcal{N}\left(\phi\left(\mathbf{x}^{(j)}\right);\mu_{i},\Sigma_{i}\right)}{\left[\sum_{l=1}^{K}\pi_{l}\mathcal{N}\left(\phi\left(\mathbf{x}^{(j)}\right);\mu_{l},\Sigma_{l}\right)\right]} = \Pr\left(z_{i}\left|\phi\left(\mathbf{x}^{(j)}\right)\right.\right) \text{ and comprises the } \mathbf{E-Step}.$$

• Pretending as if $\Pr\left(\mathbf{z}_i \middle| \phi\left(\mathbf{x}^{(j)}\right)\right)$ is independent of μ_i and \sum_i in (3),

as if
$$\Pr(z_i | \phi(\mathbf{x}^{(i)}))$$
 is independent of μ_i and $\sum_i \inf(3)$, as if this is known: $\exists M_i = \sum_{j=1}^{n} \Re(z_i | \phi(\mathbf{x}^{(i)})) \phi(\mathbf{x}^{(i)})$

November 7, 2016

The EM Trick

$$\sum_{j=1}^{m} \frac{\pi_{i} \mathcal{N}\left(\phi\left(\mathbf{x}^{(j)}\right); \mu_{i}, \Sigma_{i}\right)}{\left[\sum_{l=1}^{K} \pi_{l} \mathcal{N}\left(\phi\left(\mathbf{x}^{(j)}\right); \mu_{l}, \Sigma_{l}\right)\right]} \left(\phi\left(\mathbf{x}^{(j)}\right) - \mu_{i}\right) = 0$$
(3)

• No way to solve this in closed form to get a clean MLE estimate for μ_i !

• Note that
$$\frac{\pi_{i}\mathcal{N}\left(\phi\left(\mathbf{x}^{(j)}\right);\mu_{i},\Sigma_{i}\right)}{\left[\sum_{l=1}^{K}\pi_{l}\mathcal{N}\left(\phi\left(\mathbf{x}^{(j)}\right);\mu_{l},\Sigma_{l}\right)\right]} = \Pr\left(z_{i}\left|\phi\left(\mathbf{x}^{(j)}\right)\right) \text{ and comprises the } \mathbf{E-Step}.$$

• Pretending as if $\Pr\left(\mathbf{z}_i \middle| \phi\left(\mathbf{x}^{(j)}\right)\right)$ is independent of μ_i and Σ_i in (3),

• We get the M-Step:
$$\mu_i = \frac{\sum_{j=1}^{m} \Pr\left(z_i \middle| \phi\left(\mathbf{x}^{(j)}\right)\right) \phi\left(\mathbf{x}^{(j)}\right)}{\sum_{j=1}^{m} \Pr\left(z_j \middle| \phi\left(\mathbf{x}^{(j)}\right)\right)} = \sum_{j=1}^{m} \Phi\left(\mathbf{x}^{(j)}\right) \cdot \text{meynbeaship of } \mathbf{x}^{(j)}$$

November 7, 2016

M-Step using (Approximate) Necessary Optimality conditions for GMM M-Step or the Maximization Step

$$\mu_{i} = \frac{\sum_{j=1}^{m} \Pr\left(z_{i} \middle| \phi\left(\mathbf{x}^{(j)}\right)\right) \phi\left(\mathbf{x}^{(j)}\right)}{\sum_{j=1}^{m} \Pr\left(z_{i} \middle| \phi\left(\mathbf{x}^{(j)}\right)\right)}$$

$$\sum_{i} = \frac{\sum_{j=1}^{m} \Pr\left(z_{i} \middle| \phi\left(\mathbf{x}^{(j)}\right)\right) \left(\phi\left(\mathbf{x}^{(j)}\right) - \mu_{i}\right) \left(\phi\left(\mathbf{x}^{(j)}\right) - \mu_{i}\right)^{T}}{\sum_{j=1}^{m} \Pr\left(z_{i} \middle| \phi\left(\mathbf{x}^{(j)}\right)\right)}$$

$$\widehat{P}_{r}\left(C_{i}\right) = \pi_{i} = \frac{1}{m} \sum_{i=1}^{m} \Pr\left(z_{i} \middle| \phi\left(\mathbf{x}^{(j)}\right)\right)$$

E-Step using Bayes Rule for GMM

E-Step or the Expectation Step

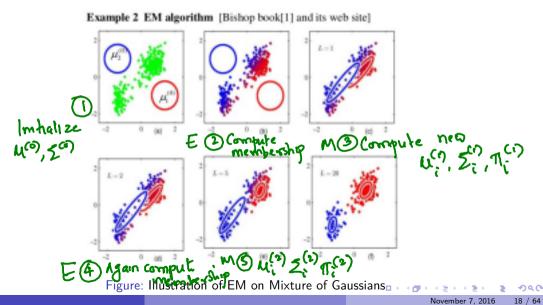
For the posterior $\Pr\left(\mathbf{z}_i \middle| \phi\left(\mathbf{x}^{(j)}\right)\right)$

$$\Pr\left(z_{i} \middle| \phi\left(\mathbf{x}^{(j)}\right)\right) = \frac{\pi_{i} \mathcal{N}(\phi(\mathbf{x}); \mu_{i}, \Sigma_{i})}{\sum_{l=1}^{K} \pi_{l} \mathcal{N}(\phi(\mathbf{x}); \mu_{l}, \Sigma_{l})}$$

Compute membership based on Bayes Rule

17 / 64

Revisiting E and M-Steps for GMM



EM More Formally: Reflections on the E and M Steps

- Necessary Optimality conditions do not yield any closed form solution
- Instead, one can continuously alternate between the E-Step and the M-Step until convergence
- This is the idea behind the EM Algorithm
- We will explain the EM Algorithm for the more general complete data loglikelihood formulation

$$LL(\theta; \phi(\mathbf{x}), \mathbf{z}) = \frac{1}{m} \log \Pr(\phi(\mathbf{x}), \mathbf{z}; \theta)$$

and show its convergence

The EM Algorithm: More generally

• Given a predictive distribution $q(\mathbf{z}|\phi(\mathbf{x}))$, the expected complete data log-likelihood is

$$\mathit{LL}_{\mathit{E}}(\theta; \phi(\mathbf{x})) = \sum_{\mathbf{z}} q(\mathbf{z}|\phi(\mathbf{x})) \log \mathsf{Pr}(\phi(\mathbf{x}), \mathbf{z}; \theta)$$

is an auxilliary function that gives a lower bound on the actual log-likelihood we want to optimize

• The actual log-likelihood under iid assumption is:

$$LL(\theta; \phi(\mathbf{x})) = \frac{1}{m} \sum_{i=1}^{m} \log \left\{ \sum_{\mathbf{z}} \Pr(\phi\left(\mathbf{x}^{(i)}\right), \mathbf{z}; \theta) \right\}$$

Lower-bound Theorem

For all θ and every possible distribution $q(\mathbf{z}|\phi(\mathbf{x}))$:

Mstep: minimizes

RHS

$$LL(\theta; \phi(\mathbf{x})) \ge LL_E(\theta; \phi(\mathbf{x})) + \frac{1}{m}H(q)$$

Equality holds if and only if

concave ineq
$$q(\mathbf{z}|\phi(\mathbf{x})) = \Pr(\mathbf{z}|\phi(\mathbf{x}); \theta)$$

Proof: (Optional)

Basic Emidea: Work on

surrogate objective).

⁹That is, invoking Jensen's inequality

Lower-bound Theorem

For all θ and every possible distribution $q(\mathbf{z}|\phi(\mathbf{x}))$:

$$LL(\theta; \phi(\mathbf{x})) \ge LL_E(\theta; \phi(\mathbf{x})) + \frac{1}{m}H(q)$$

Equality holds if and only if

$$q(\mathbf{z}|\phi(\mathbf{x})) = \mathsf{Pr}(\mathbf{z}|\phi(\mathbf{x});\theta)$$

Proof: (Optional)

$$LL(\theta; \phi(\mathbf{x})) = \frac{1}{m} \log \left\{ \sum_{\mathbf{z}} q(\mathbf{z} | \phi(\mathbf{x})) \frac{\Pr(\mathbf{z} | \phi(\mathbf{x}); \theta)}{q(\mathbf{z} | \phi(\mathbf{x}))} \right\}$$

Since log is a strictly concave function⁹

$$LL(\theta; \phi(\mathbf{x})) \geq \underbrace{\frac{1}{m} \sum_{\mathbf{z}} q(\mathbf{z}|\phi(\mathbf{x})) \log \Pr(\phi(\mathbf{x}), \mathbf{z}; \theta)}_{LL_E(\theta; \phi(\mathbf{x}))} - \frac{1}{m} \underbrace{\sum_{\mathbf{z}} q(\mathbf{z}|\phi(\mathbf{x})) \log q(\mathbf{z}|\phi(\mathbf{x}))}_{H(q)}$$

⁹That is, invoking Jensen's inequality

Proof continued (Optional)

Equality holds if and only if $\frac{\Pr(\mathbf{z}|\phi(\mathbf{x});\theta)}{q(\mathbf{z}|\phi(\mathbf{x}))}$ is a constant, that is,

$$q(\mathbf{z}|\phi(\mathbf{x})) \propto \mathsf{Pr}(\phi(\mathbf{x}),\mathbf{z};\theta) = \mathsf{Pr}(\mathbf{z}|\phi(\mathbf{x});\theta)\,\mathsf{Pr}(\phi(\mathbf{x});\theta) \propto \mathsf{Pr}(\mathbf{z}|\phi(\mathbf{x});\theta)$$

This can happen if and only if $q(\mathbf{z}|\phi(\mathbf{x})) = \Pr(\mathbf{z}|\phi(\mathbf{x});\theta)$.

EM Algo as Coordinate Descent on Lower Bound

$$\max_{\theta} LL(\theta; \phi(\mathbf{x})) \ge \max_{\theta} \max_{q} LL_{E}(\theta; \phi(\mathbf{x})) + \frac{1}{m}H(q)$$

The EM algorithm is simply coordinate ascent on the auxilliary function $LL_E(\theta;\phi(\mathbf{x}))+\frac{1}{m}H(q)$.

- Expectation Step t: $q^{(t+1)} = \underset{q}{\operatorname{argmax}} \ LL_{E}(\theta^{(t)}; \phi(\mathbf{x})) + \frac{1}{m}H(q)$ = $\underset{q}{\operatorname{argmax}} \ -D\left(q(\mathbf{z}|\phi(\mathbf{x}))||\Pr(\mathbf{z}|\phi(\mathbf{x}); \theta^{(t)})\right) + \log\left\{\phi(\mathbf{x}); \theta^{(t)}\right\}$
- Since, $LL_E(\theta^{(t)}; \phi(\mathbf{x})) + \frac{1}{m}H(q) \leq \log \left\{\phi(\mathbf{x}); \theta^{(t)}\right\}$, maximum value is attained for $q(\mathbf{z}|\phi(\mathbf{x})) = \Pr(\mathbf{z}|\phi(\mathbf{x}); \theta^{(t)})$
- Thus, the E-step can be summarized by

$$q^{(t+1)}(\mathbf{z}|\phi(\mathbf{x})) = \Pr(\mathbf{z}|\phi(\mathbf{x}); \boldsymbol{\theta^{(t)}})$$
 (4)

Special Case: Revisiting E-step for GMM (Tutorial 10)

Initialize $\mu_i^{(0)}$ to different random values and $\Sigma_i^{(0)}$ to I For the posterior $\Pr\left(z_i \middle| \phi\left(\mathbf{x}^{(j)}\right), \mu, \Sigma\right)$

$$Pr^{(t+1)}\left(z_{i} \middle| \phi\left(\mathbf{x}^{(j)}\right), \mu, \Sigma\right) = \frac{\pi_{i}^{(t)} \mathcal{N}\left(\phi(\mathbf{x}); \mu_{i}^{(t)}, \Sigma_{i}^{(t)}\right)}{\sum_{l=1}^{K} \pi_{l}^{(t)} \mathcal{N}\left(\phi(\mathbf{x}); \mu_{l}^{(t)}, \Sigma_{l}^{(t)}\right)}$$

EM Algo as Coordinate Descent on Lower Bound

$$\max_{\theta} \ LL(\theta; \phi(\mathbf{x})) \geq \max_{\theta} \ \max_{q} \ LL_{E}(\theta; \phi(\mathbf{x})) + \frac{1}{m} \mathcal{D}(q)$$

The EM algorithm is simply coordinate ascent on the auxilliary function $LL_E(\theta; \phi(\mathbf{x})) + \frac{1}{m}H(q)$.

- Maximization Step t: Since H(q) is independent of θ , $\frac{\theta^{(t+1)}}{\theta} = \underset{\theta}{\operatorname{argmax}} \ LL_E(\theta; \phi(\mathbf{x})) + \frac{1}{m}H(q^{(t+1)}) = \underset{\theta}{\operatorname{argmax}} \ \sum_{\mathbf{z}} q(\mathbf{z}|\phi(\mathbf{x})) \log \Pr(\phi(\mathbf{x}), \mathbf{z}; \theta)$
- Like ordinary maximum likelihood estimation problem, but using predicted values of z.
- The M-step may not have a closed form solution, in which case, it may be required to resort to approximation techniques.

M-step: maximize capected LL

Special Case: Revisiting M-step for GMM (Tutorial 10)

$$\mu_{i}^{(t+1)} = \frac{\sum_{j=1}^{m} Pr^{(t+1)} \left(z_{i} \middle| \phi\left(\mathbf{x}^{(j)}\right), \theta\right) \phi\left(\mathbf{x}^{(j)}\right)}{\sum_{j=1}^{m} Pr^{(t+1)} \left(z_{i} \middle| \phi\left(\mathbf{x}^{(j)}\right), \theta\right)}$$

$$\Sigma_{i}^{(t+1)} = \frac{\sum_{j=1}^{m} Pr^{(t+1)} \left(z_{i} \middle| \phi\left(\mathbf{x}^{(j)}\right), \theta\right) \left(\phi\left(\mathbf{x}^{(j)}\right) - \mu_{i}^{(t+1)}\right) \left(\phi\left(\mathbf{x}^{(j)}\right) - \mu_{i}^{(t+1)}\right)^{T}}{\sum_{j=1}^{m} Pr^{(t+1)} \left(z_{i} \middle| \phi\left(\mathbf{x}^{(j)}\right), \theta\right)}$$

$$\pi_{i}^{(t+1)} = \frac{1}{m} \sum_{i=1}^{m} Pr^{(t+1)} \left(z_{i} \middle| \phi\left(\mathbf{x}^{(j)}\right), \theta\right)$$

EM for GMM: Summary

- Initialize $\mu_i^{(0)}$ to different random values and $\Sigma_i^{(0)}$ to I. Let t=0.
- $\text{ Compute } P_{i}^{(t+1)}\left(z_{i} \middle| \phi\left(\mathbf{x}^{(j)}\right), \theta\right) \text{ using } \mu_{i}^{(t)} \text{ and } \Sigma_{i}^{(t)}$
- $\text{ Compute } \underline{\pi_i^{(t+1)}} \text{ and } \underline{\mu_i^{(t+1)}} \text{ using } \underline{Pr^{(t+1)}} \left(z_i \left| \phi \left(\mathbf{x}^{(j)} \right), \theta \right. \right) \text{ and } \Sigma_i^{(t+1)} \text{ using } \underline{Pr^{(t+1)}} \left(z_i \left| \phi \left(\mathbf{x}^{(j)} \right), \theta \right. \right) \text{ and } \underline{\mu_i^{(t+1)}}$
- If parameters have changed significantly, increment t by 1 and go back to Step 2.

- Initialize $\mu_i^{(0)}$ to different random values. Let t=0.
- ② Posterior $\Pr(z_i \mid \phi\left(\mathbf{x}^{(j)}\right), \theta) \in [0, 1]$ replaced by $\underline{P_{i,j} \in \{0, 1\}}$. Compute cluster memberships $P_{i,j}$ that minimize the sum of squared distance of points to existing centroids
- **3** Compute $\mu_i^{(t+1)}$ that minimize the sum of squared distance of points to the centroid of the cluster assigned in the previous iteration
- If parameters have changed, increment t by 1 and go back to Step 2.

0.8

0.7

0.4

0.2

Different cluster analysis results on "mouse" data set: Original Data k-Means Clustering EM Clustering 0.9 0.5 0.8 0.7 0.7 0.6 0.6 0.6 0.5 0.5 051. 0.4 0.4 0.3 0.3 0.3 0.2 0.2

Figure: Comparison of K-Means with EM (Mixture of Gaussians). Source: Wikipedia

Con servative

• Initialize $\mu_i^{(0)}$ to different random values. Let t=0.

Solution: For each $j \in [1..n]$, $i^* = \arg\min_{l} \|\phi\left(\mathbf{x}^{(j)}\right) - \mu_{l}^{(t)}\|^2$, $Pr_{i^*,j}^{(t+1)} = 1$ and $P_{l,j}^{(t+1)} = 0$ for $l \neq j^*$.

• Initialize $\mu_i^{(0)}$ to different random values. Let t=0.

Solution: For each $j \in [1..n]$, $i^* = \underset{l}{\operatorname{argmin}} \|\phi\left(\mathbf{x}^{(j)}\right) - \mu_{l}^{(t)}\|^2$, $\Pr_{i^*,j}^{(t+1)} = 1$ and $\Pr_{l,j}^{(t+1)} = 0$ for $l \neq i^*$.

$$\begin{aligned} & \boldsymbol{\mu}^{(t+1)} = \arg\min_{\boldsymbol{\mu}} \sum_{j=1}^{m} \sum_{l=1}^{K} P_{l,j}^{(t+1)} \| \phi \left(\mathbf{x}^{(j)} \right) - \mu_{l} \|^{2} & \text{(M step)} \\ & \text{Solution: } \mu_{i}^{(t+1)} = \frac{\sum_{j=1}^{m} P_{i,j}^{(t+1)} \phi \left(\mathbf{x}^{(j)} \right)}{\sum_{j=1}^{m} P_{i,j}^{(t+1)}}. \end{aligned}$$

• If any parameter $P_{i,j}$ has changed, increment t by 1 and go back to **Step 2**.

K-Means Clustering Algorithm or Hard EM (Tutorial 10)

faster than Em

- Claim: The K-Means Clustering algorithm will converge in a finite number of iterations
- Proof Sketch: At each iteration, the K-Means algorithm reduces the objective $\sum_{j=1}^{m} \sum_{l=1}^{K} P_{l,j} \|\phi\left(\mathbf{x}^{(j)}\right) - \mu_l\|^2$ and stops when this objective does not reduce any further.
- Hint1: $P^{(t+1)} = \underset{P}{\operatorname{argmin}} \sum_{i=1}^{m} \sum_{l=1}^{K} P_{l,j} \|\phi\left(\mathbf{x}^{(j)}\right) \mu_{l}^{(t)}\|^{2}$
- Hint2: $\mu^{(t+1)} = \underset{\mu}{\operatorname{argmin}} \sum_{i=1}^{m} \sum_{j=1}^{K} P_{l,j}^{(t+1)} \|\phi\left(\mathbf{x}^{(j)}\right) \mu_{l}\|^{2}$
- *Hint3*: Only a finite number of combinations of $P_{i,i}$ are possible.

Need: with every iteration x decreases

Disadvantages of K-means & Alternatives

- Fixed value of K: Right value of K critical to success
- 2 Sometimes problem owing to the wrong initialization of μ_i 's
- Mean in "no-man's land": Lack of robustness to outliers

Variants of K-means¹⁰

M-mediods: Assumption is Cluster's centroid coincides with one of the points. That is, chister in $\mu_i = \phi\left(\mathbf{x}^{(j)}\right)$ for some value of j.

 \Rightarrow Each step of the K-mediod algorithm is $K(n-1)n \sim \mathcal{O}(Kn^2)$

@ K-modes: For discrete valued attributes: (clustering spam vs-not spam)

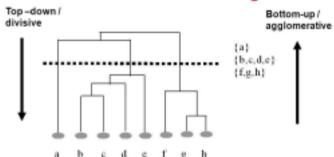
 $x[\mu_i]_q = \underset{v \in \{1, \dots V_q\}}{\operatorname{argmax}} \sum_{\mathbf{x}(i) \in C} \delta(\phi_q(\mathbf{x}^{(j)}), v) \quad \forall q = 1 \dots m$

Find membership

32 / 64

¹⁰For more details read Chapter 7 of Jiawei Han's book

Hierarchical Clustering



Mainly for Visualization, Not for deployment!

Figure: Bottom-up and Top-down Hierarchical Clustering

Hierarchical Clustering: Two Choices

- Bottom-up (agglomerative)
- Top-down (divisive)

Main idea: Iteratively merge clusters that are closest (or break clusters that are furthest apart): **NEED A NOTION OF DISTANCE BETWEEN POINTS**

Distance Measures

Denoted by d_{ij} (or s_{ij} respectively): is distance between any two datapoints i and j.

- Mahalanobis Distance (discussed for Gaussian): $||\phi(\mathbf{x}) \mu||_2^2 \Rightarrow (\phi(\mathbf{x}^{(j)}) \phi(\mathbf{x}^{(j)}))^T \Sigma^{-1}(\phi(\mathbf{x}^{(j)}) \phi(\mathbf{x}^{(j)})).$ EM algorithm has this in some sense.
- **3** If $\phi(\mathbf{x})$ are numeric / ordinal (optionally normalized to $\|\phi(\mathbf{x}_i) \phi(\mathbf{x}^{(j)})\|_p = 1$):

$$\|\phi(\mathbf{x})\|_{p} = \Big(\sum_{l=1}^{m} (\phi_{l}(x_{l}) - \phi_{l}(\mathbf{x}^{(j)}))^{p}\Big)^{1/p}$$

- p = 1: Manhattan distance
- p = 2: Euclidean distance
- p > 2: Minkowski distance

Distance Measures (binary features)

• If $\phi(\mathbf{x})$ are binary, measures based on contingency matrix defined over any two features ϕ_i and ϕ_j .

$$M = \begin{bmatrix} \#(i=1, j=1) = p & \#(i=1, j=0) = q \\ \#(i=0, j=1) = r & \#(i=0, j=0) = s \end{bmatrix}$$

if p + q + r + s = n, some symmetric and asymmetric measures

- $d_{ij} = \frac{g+r}{n}$: symmetric
 - $d_{ij} = \frac{q + r}{p + s} : \text{ symmetric (odd's ratio)}$
 - $\mathbf{0}$ $d_{ij} = 1 (p/n)$: asymmetric
 - $d_{ij} = 1 (s/n)$: asymmetric
 - $d_{ij} = 1 (\frac{p}{p+q+r}) : asymmetric$

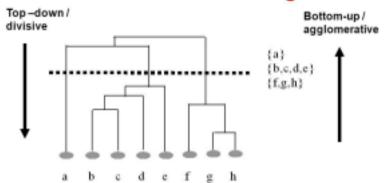
(Jaccard distance: refer: http://en.wikipedia.org/wiki/Jaccard_index)

Distance Measures (non-binary categorical features)

- **1** If $\phi(\mathbf{x})$ are discrete then :
 - $d_{ij} = 1 \frac{\#(\phi_k(i) = \phi_k(j))}{n}$: Symmetric measure
 - Expand ϕ to multiple binary features $\phi_1 \dots \phi_k$, if the original ϕ , takes k values. Now we can have the various symmetric and asymmetric measures defined for binary features above.
- ② If $\phi(\mathbf{x})$ is a combination of numeric/ordinal and discrete

$$tot_d_{ij} = w_1 * d_{ij}^{discrete} + w_2 * d_{ij}^{num/ordinal}$$
 s.t. $w_1 + w_2 = 1, w_1, w_2 \in [0, 1]$

Hierarchical Clustering



© 2007 Clos / Pedrycz / Swinlarski / Kurgan

Bottom-up Hierarchical Clustering

- Initially every point is a cluster of its own
- ② Iteratively merge closes clusters (single-link, complete-link, average distance): Merge clusters that have the least mutual distance. For top-down: Which clusters to break.
- **3** When to stop merging clusters (closely linked to the distance measure). Stop when the distance between two clusters is $> \theta$ (some threshold). For top-down: When to stop splitting the clusters.

ISSUES:

- Can't undo clustering decision.
- 2 Lack of flexibility in choice of clustering algorithm
- O not scale well.

ADVANTAGE: Easy to visualize. So a choosen k from hierarchical clustering can be used in k-means or any other clustering algorithm run from scratch.

Some of the algoritms studied here were *Birch clustering* and *Chameleon*.

Extra Slides:

Derivation of MLE and MAP for GDA,
Another Generative Distribution with MLE and MAP: Multinomial
Distribution, Multinomial Naive Bayes,
Frameworks for Multilabel Classification

Multinomial distribution

- Multinomial distribution is similar to the binomial distribution but for a variable that could assume one of t possible values $V_1, V_2 \dots V_t$
- Eg: In the case of the toss of dice, t=6
- $Pr(X = V_j) = \mu_j$
- Given n iid observations of a multinomial random variables, with m_i being the number of times $X = V_i$ was observed, the likelihood will be:

Multinomial distribution

- Multinomial distribution is similar to the binomial distribution but for a variable that could assume one of t possible values $V_1, V_2 \dots V_t$
- Eg: In the case of the toss of dice, t=6
- $Pr(X = V_j) = \mu_j$
- Given n iid observations of a multinomial random variables, with m_i being the number of times $X = V_i$ was observed, the likelihood will be:

$$L(n_1, \dots, n_t; \mu_1, \dots, \mu_t) = \frac{n!}{n_1! \cdots n_t!} \mu_1^{n_1} \cdots \mu_t^{n_t}$$
 (5)

Finding the conjugate prior

Question: What will be conjugate priors for μ_j 's, the parameters of Multinomial?

Dirichlet Prior for Multinomial

$$P(\mu_1, \dots \mu_t | \alpha_1, \dots \alpha_t) \propto \prod_{i=1}^t \mu_i^{\alpha_i - 1}$$
(6)

• Normalizing (to make the prior a density function):

Dirichlet Prior for Multinomial

$$P(\mu_1, \dots \mu_t | \alpha_1, \dots \alpha_t) \propto \prod_{i=1}^t \mu_i^{\alpha_i - 1}$$
(6)

• Normalizing (to make the prior a density function):

$$\int_{\mu_1} \dots \int_{\mu_t} P(\mu_1, \dots \mu_n | \alpha_1, \dots \alpha_t) = 1$$

$$P(\mu_1, \dots \mu_t | \alpha_1, \dots \alpha_t) = \frac{\Gamma(\sum_{l=1}^t \alpha_l)}{\prod_{l=1}^t \Gamma(\alpha_l)} \prod_{l=1}^t \mu_l^{\alpha_l - 1}$$
(7)

which, is $Dir(\alpha_1 \dots \alpha_t)$ - the **Dirichlet Distribution**. Recall $\Gamma(n) = (n-1)!$ when $n \in \mathcal{N}$

• ... a generalization of Beta distribution, just as multinomial is generalization of Bernoulli distribution

Dirichlet as Generalization of $Beta(\alpha, \beta)$

- $Dir(\mu_1, \mu_2, \dots, \mu_t; \alpha_1, \dots, \alpha_t) = \frac{\mu_1^{\alpha_1 1} \dots \mu_t^{\alpha_t 1}}{B(\alpha_1, \dots, \alpha_t)}$ is the Dirichlet conjugate prior for multinomial/categorical distributions
- $\mathbf{E}_{\textit{Dir}(\alpha_1,...,\alpha_t)}[\mu_l] = \frac{\alpha_l}{\sum_{l=1}^t \alpha_l}$
- **3** Dir(1,...,1) is the uniform distribution!

Posterior Probability for Multinomial

$$P(\mu_{1}, \dots \mu_{t} | x_{1}, \dots x_{n}) = \frac{P(x_{1}, \dots x_{n} | \mu_{1}, \dots \mu_{t}) P(\mu_{1}, \dots \mu_{t})}{P(x_{1}, \dots x_{n})}$$

$$P(\mu_{1}, \dots \mu_{t} | x_{1}, \dots x_{n}) = \frac{\Gamma(\sum_{j=1}^{t} \alpha_{j} + n)}{\prod_{i=1}^{t} \Gamma(\alpha_{j} + \sum_{k=1}^{n} X_{k,j})} \prod_{j=1}^{t} \mu_{j}^{(\alpha_{j} - 1 + \sum_{k=1}^{n} X_{k,j})}$$
(8)

Summary for Multinomial

• For multinomial, the mean at maximum likelihood is given by:

$$\hat{\mu}_{I} = \frac{\sum_{j=1}^{m} X_{j,I}}{n} \tag{9}$$

- Conjugate prior follows $Dir(\alpha_1 \dots \alpha_n)$
- Posterior is $Dir(\dots \alpha_I + \sum_{j=1}^m X_{j,I} \dots)$
- The expectation of μ for $Dir(\alpha_1 \dots \alpha_n)$ is given by:

Summary for Multinomial

• For multinomial, the mean at maximum likelihood is given by:

$$\hat{\mu}_{l} = \frac{\sum_{j=1}^{m} X_{j,l}}{n} \tag{9}$$

- Conjugate prior follows $Dir(\alpha_1 \dots \alpha_n)$
- Posterior is $Dir(\ldots \alpha_I + \sum_{j=1}^m X_{j,I} \ldots)$
- The expectation of μ for $Dir(\alpha_1 \dots \alpha_n)$ is given by:

$$E[\mu]_{Dir(\alpha_1...\alpha_n)} = \left[\frac{\alpha_1}{\sum \alpha_I} ... \frac{\alpha_1}{\sum \alpha_I}\right]$$
 (10)

• The expectation of μ for $Dir(\dots \alpha_I + \sum_{i=1}^m X_{j,I} \dots)$ is given by:

Summary for Multinomial

• For multinomial, the mean at maximum likelihood is given by:

$$\hat{\mu}_{I} = \frac{\sum_{j=1}^{m} X_{j,I}}{n} \tag{9}$$

- Conjugate prior follows $Dir(\alpha_1 \dots \alpha_n)$
- Posterior is $Dir(\ldots \alpha_I + \sum_{j=1}^m X_{j,I} \ldots)$
- The expectation of μ for $Dir(\alpha_1 \dots \alpha_n)$ is given by:

$$E[\mu]_{Dir(\alpha_1...\alpha_n)} = \left[\frac{\alpha_1}{\sum \alpha_I} ... \frac{\alpha_1}{\sum \alpha_I}\right]$$
 (10)

• The expectation of μ for $Dir(\dots \alpha_I + \sum_{i=1}^m X_{j,i} \dots)$ is given by:

$$E[\mu]_{Dir(\dots\alpha_l + \sum_{k=1}^n X_{j,l}\dots)} = \left[\frac{\alpha_1 + \sum_j X_{j,1}}{\sum \alpha_l + n} \dots \frac{\alpha_l + \sum_j X_{j,l}}{\sum \alpha_l + n} \dots \right]$$
(11)

(Multinomial) Naive Bayes

- $< \mathbf{x}^{(j)}, C_i >$: Tuple with example $\mathbf{x}^{(j)}$ belonging to class C_i . $Pr(C_i)$ is prior probability of class C_i .
- $\phi_1\left(\mathbf{x}^{(j)}\right),\ldots,\phi_m\left(\mathbf{x}^{(j)}\right)$: The feature vector for $\mathbf{x}^{(j)}$
- $P(\phi_q(\mathbf{x})|C_i) \sim \textit{Mult}(\mu_{1,i}^q \dots \mu_{t_q,i}^q)$; that is, each feature ϕ_q follows multinomial distribution Bayes
 - ① $[V_1^l \dots V_{t_1}^l] \dots [V_1^q \dots V_{t_q}^q] \dots [V_1^m \dots V_{t_m}^m]$: Set of values that could be taken by each of $\phi_1, \phi_2 \dots \phi_m$ respectively
 - ② $[\mu_{1,i}^1 \dots \mu_{t_1,i}^1] \dots [\mu_{1,i}^q \dots \mu_{t_q,i}^q] \dots [\mu_{1,i}^m \dots \mu_{t_m,i}^m]$: Parameters for each of $\phi_1, \phi_2 \dots \phi_m$ respectively for class C_i
- $P(\phi_1(\mathbf{x})...\phi_m(\mathbf{x})|C_i) = \prod_{q=1}^m P(\phi_q(\mathbf{x})|C_i)$: Feature are independent given the class

ML for Naive Bayes

ML Estimators: $\left[\hat{\mu}_{ML}, \hat{P}r_{ML}(C_i)\right]$. or more simply $\left[\hat{\mu}, \hat{P}r(C_i)\right]$

$$\begin{split} \hat{\mu}, \hat{P}r(C) &= \underset{\mu, Pr(C_i)}{\text{argmax}} \prod_{k=1}^{n} Pr(c(X_k)) * \prod_{q=1}^{m} Pr(\phi_q(X_k) | c(X_k)) \\ &= \underset{\mu, Pr(C)}{\text{argmax}} \prod_{i=1}^{|C|} \left(Pr(C_i) \right)^{\#C_i} * \prod_{q=1}^{m} \prod_{j=1}^{t_q} \left(\mu_{j,i}^q \right)^{n_{j,i}^q} \end{split}$$

where,

$$\#C_i = \text{No. of times } c(X_k) = C_i \text{ across all } k$$
's in the dataset $n_{j,i}^q = \text{No. of times } \phi_q(X_k) = V_j \text{ and } c(X_k) = C_i \text{ across all the } k$'s $n_{j,i}^q = \sum_k \delta \left(\phi_q(X_k), V_j^q \right) \delta \left(c(Xk_i), C_i \right)$

$$Pr(c(X_k) = \sum_{i=1}^{|C|} \delta(c(X_k), C_i) Pr(C_i)$$

$$Pr(\phi_q(X_k) | c(X_k)) = \sum_{j=1}^{t_q} \delta(\phi_q(X_k), V_j^q) * \mu_{j, c(X_k)}^q$$

November 7, 2016 49 / 64

$$Pr(c(X_k) = \sum_{i=1}^{|C|} \delta(c(X_k), C_i) Pr(C_i)$$

$$Pr(\phi_q(X_k) | c(X_k)) = \sum_{i=1}^{t_q} \delta(\phi_q(X_k), V_j^q) * \mu_{j,c(X_k)}^q$$

So, the final log-likelihood objective function is:

$$\operatorname{argmax}_{\mu, Pr(c)} \left[\sum_{i=1}^{|c|} (\#C_i) \log Pr(C_i) + \sum_{j=1}^{m} \sum_{j=1}^{t_q} n_{j,i}^q \log(\mu_{j,i}^q) \right]$$
(12)

such that
$$\sum_{i=1}^{|c|} Pr(C_i) = 1$$
, $\sum_{i=1}^{t_q} \mu_{i,i}^q = 1 \quad \forall q, i, Pr(C_i) \in [0,1] \quad \forall i \text{ and } \mu_{i,i}^q \in [0,1] \quad \forall q, i, j$

Solving Naive Bayes through KKT Conditions

Intuitively, working out the KKT conditions on the above objective function, we get the Maximum Likelihood Naive Bayes estimators as follows

$$\hat{\mu}_{j,i}^{q} = \frac{n_{j,i}^{q}}{\sum_{j=1}^{n} n_{j,i}^{q}}$$

$$\hat{P}r_{c_{i}} = \frac{\#C_{i}}{\sum_{i} \#C_{i}}$$

Tutorial 10

Can you now do Bayesian Inference for Naive Bayes using the Dirichlet Conjugate Prior for each $\phi_a(\mathbf{x})$?

Derivation of MAP and Maximum Likelihood Estimates for Multivariate Gaussian: Recapped from https://www.cse.iitb.ac.in/~cs725/notes/lecture-slides/lecture-06-unannotated.pdf

Likelihood estimates for each class C_i

Let $\mathcal{D}_i \subseteq \mathcal{D}$ the subset of data points that belong to class C_i . Let $\mathcal{D}_i = \mathbf{x}_1^i...\mathbf{x}_{m_i}^i$

- $LL(\mathbf{x}_1^i...\mathbf{x}_{m_i}^i|\mu_i,\Sigma_i) = -\frac{m}{2}ln(2\pi) \frac{m}{2}ln[|\Sigma_i|] \frac{1}{2}\sum_{i=1}^{m_i}((\phi(\mathbf{x}_j^i) \mu_i)^T\Sigma_i^{-1}(\phi(\mathbf{x}_j^i) \mu_i)).$
- Setting $\nabla_{\mu_i} LL = 0$, and $\nabla_{\Sigma_i} LL = 0$ for each *i* individually , we get

Likelihood estimates for each class C_i

Let $\mathcal{D}_i \subseteq \mathcal{D}$ the subset of data points that belong to class C_i . Let $\mathcal{D}_i = \mathbf{x}_1^i ... \mathbf{x}_{m_i}^i$

- $LL(\mathbf{x}_{1}^{i}...\mathbf{x}_{m_{i}}^{i}|\mu_{i},\Sigma_{i}) = -\frac{m}{2}ln(2\pi) \frac{m}{2}ln[|\Sigma_{i}|] \frac{1}{2}\sum_{i=1}^{m_{i}}((\phi(\mathbf{x}_{j}^{i}) \mu_{i})^{T}\Sigma_{i}^{-1}(\phi(\mathbf{x}_{j}^{i}) \mu_{i})).$
- Setting $\nabla_{\mu_i} LL = 0$, and $\nabla_{\Sigma_i} LL = 0$ for each i individually , we get

$$\bullet \quad \nabla_{\mu_i} \mathcal{L} \mathcal{L} = \left[-\frac{1}{2} \sum_{j=1}^{m_i} 2(\phi(\mathbf{x}_j^i) - \mu_i) \right] \Sigma_i^{-1} = 0$$

- ② Since Σ_i is invertible, $\sum_{j=1}^{m_i} (\phi(\mathbf{x}_j^i) \mu_i) = 0$ ie, $\hat{\mu}_i = \frac{1}{m_i} \sum_{j=1}^{m_i} \phi(\mathbf{x}_j^i)$
- $\hat{\Sigma}_i = \frac{1}{m_i} \sum_{i=1}^{m_i} (\phi(\mathbf{x}_j^i) \hat{\mu}_i) (\phi(\mathbf{x}_j^i) \hat{\mu}_i)^T$

Estimates based on all $n\left(=\sum_{i=1}^K m_i\right)$ instances

•
$$\operatorname{Pr}\left((\mathbf{x}_{1}, y_{1}), \dots, (\mathbf{x}_{n}, y_{n})\right) = \operatorname{Pr}\left(\mathbf{x}_{1} \dots \mathbf{x}_{n} \mid y_{1} \dots y_{n}\right) \operatorname{Pr}\left(y_{1} \dots y_{n}\right)$$

$$= \prod_{i=1}^{K} \operatorname{Pr}\left(\mathbf{x}_{1}^{i} \dots \mathbf{x}_{m_{i}}^{i} \mid \mu_{i}, \Sigma_{i}\right) \operatorname{Pr}\left(C_{i}\right)^{m_{i}} \Rightarrow$$

$$LL\left((\mathbf{x}_{1}, y_{1}), \dots, (\mathbf{x}_{n}, y_{n})\right) = \sum_{i=1}^{K} LL(\mathbf{x}_{1}^{i} \dots \mathbf{x}_{m_{i}}^{i} \mid \mu_{i}, \Sigma_{i}) + m_{i} \log \Pr(C_{i})$$

$$= \left(\sum_{i=1}^{K} -\frac{m}{2} \ln(2\pi |\Sigma_{i}|) + \frac{1}{2} \sum_{i=1}^{m_{i}} ((\phi(\mathbf{x}_{j}^{i}) - \mu_{i})^{T} \Sigma_{i}^{-1} (\phi(\mathbf{x}_{j}^{i}) - \mu_{i}))\right) + \sum_{i=1}^{K} m_{i} \log \Pr(C_{i})$$

Estimates based on all $n\left(=\sum_{i=1}^K m_i\right)$ instances

•
$$LL((\mathbf{x}_{1}, y_{1}), \dots, (\mathbf{x}_{n}, y_{n}))$$

$$= \left(\sum_{i=1}^{K} -\frac{m}{2} \ln(2\pi |\Sigma_{i}|) - \frac{1}{2} \sum_{j=1}^{m_{i}} ((\phi(\mathbf{x}_{j}^{i}) - \mu_{i})^{T} \Sigma_{i}^{-1} (\phi(\mathbf{x}_{j}^{i}) - \mu_{i}))\right) + \sum_{i=1}^{K} m_{i} \log \Pr(C_{i})$$

• Like before, setting $\nabla_{\mu_i} LL = 0$, and $\nabla_{\Sigma_i} LL = 0$: $\hat{\mu}_i = \frac{1}{m_i} \sum_{i=1} \phi(\mathbf{x}_j^i)$ and

$$\hat{\Sigma}_i = \frac{1}{m_i} \sum_{i=1}^{m_i} (\phi(\mathbf{x}_j^i) - \hat{\mu}_i) (\phi(\mathbf{x}_j^i) - \hat{\mu}_i)^T$$

• Also setting $\nabla_{\Pr(C_i)} LL = 0$, $\widehat{\Pr(C_i)} = \frac{m_i}{\sum_{j=1}^K n_j}$

Conjugate Prior & MAP for Univariate Gaussian

RECAP:

- $P(\mathbf{x}) \sim \mathcal{N}(\mu, \sigma^2)$
- \bullet The conjugate prior for mean of univariate gaussian distribution in the case that σ^2 is known is

$$P(\mu) = \mathcal{N}(\mu_0, \sigma_0^2)$$

- $P(\mu|x_1...x_n) = \mathcal{N}(\mu_n, \sigma_n^2)$
- $\bullet \ \mu_n = \left(\frac{\sigma^2}{n\sigma_0^2 + \sigma^2}\mu_0\right) + \left(\frac{n\sigma_0^2}{n\sigma_0^2 + \sigma^2}\hat{\mu}_{mle}\right)$
- $\bullet \ \frac{1}{\sigma_n^2} = \frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}$

Conjugate Prior & MAP for Multivariate Gaussian

• Rearranging terms for $\mu \sim \mathcal{N}(\mu_0, \sigma^2_0)$ and $\mathbf{x} \sim \mathcal{N}(\mu, \sigma^2)$

$$\frac{1}{\sigma_n^2} = \frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}$$
$$\frac{\mu_n}{\sigma_n^2} = \frac{n}{\sigma^2} \hat{\mu}_{mle} + \mu_0$$

such that $\Pr(\mu|D) \sim \mathcal{N}(\mu_n, \sigma_n^2)$. Here n/σ^2 is due to noise in observation while $1/\sigma_0^2$ is due to uncertainity in μ

ullet Extending to Bayesian setting 11 for multivariate case with fixed Σ

$$\phi(\mathbf{x}) \sim \mathcal{N}(\mu, \Sigma), \ \mu \sim \mathcal{N}(\mu_0, \Sigma_0) \ \Rightarrow \mathsf{Pr}(\mu|\textit{D}) = \mathcal{N}(\mu_\textit{n}, \Sigma_\textit{n})$$

$$\begin{split} \Sigma_{\textit{n}}^{-1} &= \Sigma_{0}^{-1} + \textit{n}\Sigma^{-1} \\ \Sigma_{\textit{n}}^{-1} \mu_{\textit{n}} &= \textit{n}\Sigma^{-1}\hat{\mu}_{\textit{mle}} + \Sigma_{0}^{-1}\mu \end{split}$$

MAP estimates μ_n and Σ_n obtained by solving above linear system.

 $^{^{11} \}verb|https://en.wikipedia.org/wiki/Multivariate_normal_distribution \#Bayesian_inference| \\$

Extensions

- **1** Recall assumption: $\phi(\mathbf{x})$ is generated using **exactly one** $\mathcal{N}(\mu_i, \Sigma_i)$
- What if this assumption were violated?

Extensions

- **①** Recall assumption: $\phi(\mathbf{x})$ is generated using **exactly one** $\mathcal{N}(\mu_i, \Sigma_i)$
- What if this assumption were violated?
 - ▶ Supervised Multi-labeled: What if an example $\phi(\mathbf{x})$ is known to belong to multiple classes (Gaussians)?

$$P(\phi(\mathbf{x})|C_p) = \mathcal{N}(\mu_p, \Sigma_p)$$

$$P(\phi(\mathbf{x})|C_q) = \mathcal{N}(\mu_q, \Sigma_q)$$

Extensions

- **1** Recall assumption: $\phi(\mathbf{x})$ is generated using **exactly one** $\mathcal{N}(\mu_i, \Sigma_i)$
- What if this assumption were violated?
 - ▶ **Supervised Multi-labeled**: What if an example $\phi(\mathbf{x})$ is **known to** belong to multiple classes (Gaussians)?

$$P(\phi(\mathbf{x})|C_p) = \mathcal{N}(\mu_p, \Sigma_p)$$

$$P(\phi(\mathbf{x})|C_q) = \mathcal{N}(\mu_q, \Sigma_q)$$

Unsupervised Mixture (of Gaussians):

$$\Pr(\phi(\mathbf{x})) = \sum_{i=1}^{K} \Pr(\phi(\mathbf{x}), C = z_i) = \sum_{i=1}^{K} \Pr(C = z_i) \mathcal{N}(\mu_i, \Sigma_i)$$

Supervised Multi-labeled

Building a K-class discriminant by combining a number of two-class discriminants

- one-versus-the-rest: In this approach, K-1 classifiers are constructed, each of which separates the points in a particular class C_k from points not in that classes
- ullet one-versus-one: In this method, $\binom{K}{2}$ binary discriminant functions are introduced, one for every possible pair of classes.

Can you think of problems with each of the above?

Multi-labeling and Nil-labeling

Attempting to construct a K class discriminant from a set of two class discriminants can lead to multi-labeled and nil-labeled regions. Multilabeled regions marked with '?'.

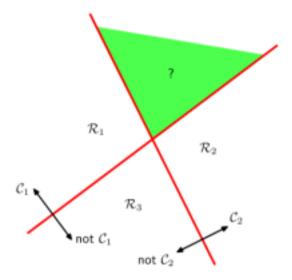


Figure: Illustrates multi-labeling and nil-labeling (\mathcal{R}_3 has no label) in one-versus-rest case

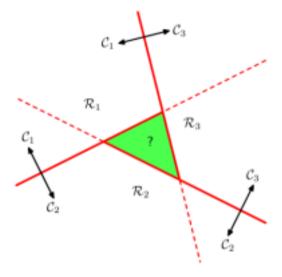


Figure: Illustrates the multi-labeling in one-versus-one case, but at the cost of complexity

OPTIONAL: Unbiased Estimators

- Estimator $e(\theta)$ is called an unbiased estimator of θ if $E[e(\theta)] = \theta$
- If $e_i(\theta), e_2(\theta), ..., e_k(\theta)$ are unbiased estimators and $\sum_{i=1}^K \lambda_i = 1$ then $\sum_{i=1}^K \lambda_i e_i(\theta)$ is also unbiased estimator
- $E(\hat{\Sigma}_i) = \frac{n_i 1}{n_i} \Sigma_i \Rightarrow \hat{\Sigma}_i$ is a biased estimator.
- An unbiased estimator for Σ_i is therefore $\frac{1}{n_i-1}\sum_{i=1}^{n_i} (\mathbf{x}_j^i \hat{\mu}_i)(\mathbf{x}_j^i \hat{\mu}_i)^T$

OPTIONAL: Sufficient statistic

• s is a sufficient statistic for θ if $\Pr(D|s,\theta)$ is independent of θ \Leftrightarrow iff $\Pr(D|\theta)$ can be written as $\Pr(D|\theta) = g(s,\theta)h(D)$.

OPTIONAL: Sufficient statistic

- s is a sufficient statistic for θ if $\Pr(D|s,\theta)$ is independent of θ \Leftrightarrow iff $\Pr(D|\theta)$ can be written as $\Pr(D|\theta) = g(s,\theta)h(D)$.
- For Gaussian, $\hat{\mu}_i = \frac{1}{m} \sum_{j=1}^{n_i} \phi(x_i)$ is a sufficient statistic for $\theta = \mu_i$ because:

$$Pr(D|\mu_i) = g(\hat{\mu}_i, \mu_i)h(D)$$
, where

OPTIONAL: Sufficient statistic

- s is a sufficient statistic for θ if $\Pr(D|s,\theta)$ is independent of θ \Leftrightarrow iff $\Pr(D|\theta)$ can be written as $\Pr(D|\theta) = g(s,\theta)h(D)$.
- For Gaussian, $\hat{\mu}_i = \frac{1}{m} \sum_{i=1}^{n_i} \phi(x_i)$ is a sufficient statistic for $\theta = \mu_i$ because:

$$\begin{split} \Pr(D|\mu_i) &= g(\hat{\mu}_i, \mu_i) h(D), \text{ where} \\ \Pr(D|\mu_i) &= \prod_{j=1}^{n_i} \frac{1}{(2\pi)^{\frac{m}{2}} |\Sigma_i|^{\frac{1}{2}}} \exp\left(\frac{-(\phi(x_j^i) - \mu_i)^T \Sigma_i^{-1} (\phi(x_j^i) - \mu_i)}{2}\right) \\ g(\hat{\mu}_{mle}, \mu_i) &= \exp\left(-\frac{n_i}{2} \mu_i^T \Sigma_i^{-1} \mu_i + \mu_i^T \Sigma_i^{-1} (n_i \hat{\mu}_i)\right) \\ h(x_1^i, x_2^i ... x_{n_i}^i) &= \frac{1}{2\pi^{nm/2} |\Sigma_i|^{n_i/2}} \exp\left(-1/2 \sum_{i=1}^{n_i} \phi^T (x_j^i) \Sigma_i^{-1} \phi(x_i^i)\right) \end{split}$$