Lecture 27: More Unsupervised Learning: Generative Models, Mixture of
Gaussians, EM Algorithm, K-Means etc

Instructor: Prof. Ganesh Ramakrishnan



Discriminative & Generative Classification Models
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@ Goal in classification: Assign an input x with feature vector ¢(x) € R™ to one of K
discrete classes C, where ke 1, ..., K.

Discriminative Models (so far): Directly model P(Cj|¢(x)). E.g.: Logistic Regression and
Neural Networks G porninant s featon
@ Generative Models: Model P(¢(x)|C;) for each i mode\ S

» Continuous Attributes = P(¢(x)|C;) ~ N (pi, X;) for Gaussian Discriminant Analysis
» Discrete Attributes = P(¢(x)|C;) ~ Mult(p1, ..., pm) for multivariate Bernoulli Naive Bayes!

> tain the posterior using Bayes Rule ] ra’
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Discriminative & Generative Classification Models
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£ Goal in classification: Assign an input x with feature vector ¢(x) € R™ to one of K
&  discrete classes Cx where ke 1,..., K.
& o Discriminative Models (so far): Directly model P(Cj|¢(x)). E.g.: Logistic Regression and
&  Neural Networks
& e Generative Models: Model P(¢(x)|C;) for each i
& » Continuous Attributes = P(¢(x)|C;) ~ N(pi, X;) for Gaussian Discriminant Analysis
E » Discrete Attributes = P(¢(x)|C;) ~ Mult(py,.~., pm) for multivariate Bernoulli Naive Bayes?
_ P(o(x)|C)P(C)

» Obtain the posterior using Bayes Rule P(Ci|¢(x)) = Z P(H)|C)P(C) — f(C}(-ﬂ))

a'tsvg(’:-')( P(CCI¢(¢)> .__J aujza'* WV(CI)
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Gaussian (Quadratic) Discriminant Analysis

@ A canonical example of Generative Model ‘
@ Example K class case:
P(¢(x)[C1) = N (p1, 1)
P(¢(x)|Ci) = N (i, 2i)
P(6(x)| Ci) = N (1, B

© Assumption: ¢(x) is generated using exactly one N (u;, ;)

© In the case of K = 2, decision surface will be {¢(x) | P(Ci|p(x)) = P(Ca|p(x))}. The
surface will be quadratic

@ Hence, this classifier is also referred to as Quadratic Discriminant Analysis (QDA)

¢ — 6\”1]@ch clamsee
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Gaussian (Quadratic) Discriminant Analysis?

Figure: Illustration of Quadratic Discriminant Analysis

http://i.stack.imgur.com/OKYBH.png <O <@ <E> <Br F VA



Why Quadratic Separating Surface?

n §1> ()
o If ¢(x) ~ N(ui, X)) (where ¢(x) € R™) then
_ 1 —(¢(x) — i) T8 ($(x) — ) A
U@ Priot) | ) = g e > (@

@ So, the separating surface is ¢(x) such that {¢(x) | P(Ci|p(x)) = P(Calp(x))} that is,

{6(x) | P(¢p(x) | C1)P(C1) = P(¢(x) | C2)P(Ca)} that is, after taking logs, ¢(x) such
that

o9 (Re (5> Ie) P2 €D ) = 1y (R($e0\en) ¥ (C5))
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Why Quadratic Separating Surface?

o If ¢(x) ~ N(ui, X)) (where ¢(x) € R™) then

(D) | C) = L ep— P =) 5 (O(x) — 1)
Prio() | C) = gy exp =

@ So, the separating surface is ¢(x) such that {¢(x) | P(Ci|p(x)) = P(Ca|¢p(x))} that is,
{6(x) | P(¢p(x) | CL)P(C1) = P(¢(x) | C2)P(Ca)} that is, after taking logs, ¢(x) such
that

—(@00) = 1) BT (O(X) — pn) + (D(x) = p12) 85 () — pra) = b

where b contains terms independent of ¢(x).

@ This is indeed a quadratic equation!
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Maximum Likelihood estimates for QDA

Assuming test point x belongs to exactly one class, = find C* such that,

C = argmax log[P(x| C;) P(C))] = argmax log[V (x| i, 2i) P(Ci)] (1)

We can obtain MLE fi;, 3 and P (G) by extending? derivations for Multivariate Gaussian and
use in (2) - -y

IE %

e Setting V,LL =0, and Vy,LL = 0: %

ﬁZ:_L.Z ¢ () ~ e

{ ¢ U, 7
mt’ xec" ~ {1 3”
.1z (- be) (G- Qo
¢ omg xel

nNEN
3Recap from lecture-06-unannotated.pdf as well as extra (optional) accompanying this-lecture
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Maximum Likelihood estimates for QDA
Assuming test point x belongs to exactly one class, = find C* such that

C" = argmax log[P(x|G) P(C))] = argmax log [NV (x| i, 27) P(C)] (1)

We can obtain MLE fi; 2,- and Is\r(C,-) by extending3 derivations for Multivariate Gaussian and

use in (2)
m;j

@ Setting V,,LL =0, and Vyx,LL = 0: fi; :%Z ) and
- =1

A 1 . .
Y= Z(qb(xj’) — i) (p(x)) — fii) T....called the empirical co-variance matrix in statistics

e Also setting Vp,(c,)LL =0, PA( ) = —=p—
— > 1 mj

nd since E[f1;] = pi, fij is an unbiased estimator. [Extra optional slides]
@ Naive Bayes Classifier: Each 3; assumed to be diagonal

3Recap from lecture-06-unannotated.pdf as well as extra (optional) accompanying this-lecture
November 7, 2016
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Bayesian estimation for QDA Cfo\\ows Al ,S:m-rn lechute G)

Assuming test point x belongs to exactly one class, = find C* such that,

€ = argmax log[P(x|C)P(C)] = argmax Iog[\ (x| ) P(C))

(2)

We can obtain MAP /i;, 3; and PAr(C,-) by extending* derivations for Multivariate Gaussian and

use in (2)

e Extending to Bayesian setting® for multivariate case with fixed (non-probabilistic) 3;

6\0\;‘: P(x | G) ~ N (i, £0), i ~ N (1, £9) = Pr(uifD) = N (pf", ™)
.

° A -1
qQ N . -
\MS Qi&zb (=)~ = (29) +mi(2) 7
- . 1 -1
ﬁ& 2oty Co M) u = mi(S) ™ fumie + (E?) 10
MAP estlmates 1 M and E,f"" are obtained by solving above linear system.

@ As before, Pr(C) Wml_
el mj

“Recap from lecture-06- unannotated pdf as well as extra (optional) accompanying this lecture
5https //en. w1k1ped1a org/w1k1/Mu1t1var1ate normal_distribution#Bayesian_inference
November 7, 2016
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Tutorial 10

@ Suppose, in our generative model, the points from each class are generated using a
multivariate Gaussian with a different mean pu; for each class C;, but a shared covariance
Nared covarian

matrix >: T
1 —(o(x ¥ ;
PLOGOIC) = ———r exp == — i) ««'-\"’\ g
2 2
2m) [ w2
@ Show that the Maximum Likelihood estimates are: '3\"' v‘\m“
S
m;
xeC;

Z—ZZ ¢(x) — )"

i=1 xeC;

@ In fact, this has a Linear separating surface and is therefore called Linear Discriminant
Analysis (LDA)

e November 7, 2016 8 / 64



Tutorial 10: Linear Discriminant Analysis®

5 Linear Discriminant Analysis 4?uadratic Discriminant Analysis

®e versicolor
e%e virginica

versicolor
virginica

15

l'i.o 4.55.0556.06.57.07.58.085 4 5 6 7 8

Figure: Illustration of Linear vs. Quadratic Discriminant Analysis




Unsupervised Mixture of Gaussians

@ Recall assumption: ¢(x) is generated using exactly one N (u;, X))
- . . . MM
@ What if this assumption was violated?

@ 75(4) cold  hove beeo 3,m,‘a\_to\
Sor (5 & Cg - - |
@‘ﬂ)c mt_mbc-csln-.f a&/?i(‘\’b Ao 0\% Cis

s unknswn {7 !
4
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Unsupervised Mixture of Gaussians

@ Recall assumption: ¢(x) is generated using exactly one N (u;, %))
@ What if this assumption was violated?
» What if an example ¢(x) belongs to multiple classes (Gaussians)?

Pr(¢(x)|Cp) = N (ip, Xp)
Pr(p(x)|Cq) = N(9(x) | g, Zq)

» What if the membership of an example to the different classes is not known?

K
‘\(Q* \f'\ C‘ ZPr C=2z) ZPV(CZZ:')N(¢( ), His 27)

i=

£
l -

- c
D :* (x| =0 e AHA\E)
‘/./-@———‘?., f (74 ) P of Bduter o g}

-
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\us ¢

e ﬂ"‘”‘h’rév*ember&‘z"m'e S



Unsupervised Mixture

o Ze€{z,z,...,2z}: Multinomial variable indicating mixture component & K = number
of (hidden) classes or mixture components
@ ¢(x): Random variable (vector), with distribution specified, conditioned on different

values z; of Z
Pr(¢(x) | z; 6;) ~ ,-x; P end eal @L (M Y ZD§)
@ The finite mixture model is defined as r[lrbb DS' = bﬂ_j
3€nma\ca (Ewm Z:

B (o) ZH(z)de(<;0)

idfite  voreduve Mode\S =) cj\

"Proportion of the population in subpopulation /.
November 7, 2016 11 / 64




Unsupervised Mixture

e Ze€{z,z,...,2z}: Multinomial variable indicating mixture component & K = number
of (hidden) classes or mixture components

@ ¢(x): Random variable (vector), with distribution specified, conditioned on different

values z; of Z
Pr(o(x) | zi;0;) ~ fi(x; 0))

@ The finite mixture model is defined as
K K
Pr(o(x)) = Y Pr(z)fi(x;0;) = > mifi(x; 0:)
i=1 i=1
T = [m,m2,..., ) and 0 = [01,02,...,04] are the paramaters of the mixture model,

with a fixed value of k.

e Quantities Pr(z;) = 7; are mixing weights’

"Proportion of the population in subpopulation /.

e oo e



Example: Gaussian Mixture Model (GMM)

@ The density of each mixture component is Gaussian with 6; = (u;, %;). (\"‘a\\

0000 = N6 1) 3yl ot T8
ok S i)
@ Pr(¢(x)) is then called a mixture of Gaussian IA;
T N($EH
Pr(o(x) | z;; 0i) ~ fi(x; 6;) Z ‘ (

Gaussian Mixture Model (GMM) is itself NOT a Gaussian!

@ Supervised setting: We learnt (11, %) using Maximum Likelihood/MAP when a (unique)
z was observed for an x

@ Unsupervised setting: Learning parameters 6; = (u;, ;) in the presence of incomplete

-~

data (only instances of ¢(x)) | -
.’, ,/
cZ ’
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. . . 8
Parameter Estimation for Mixture Models Noke: Zh—j____lﬂ.—w

Noed: TAc=| dr€[en)=— / —
e Decomposition of the joint distribution &(Z‘ﬂ’bz Z.'('ig(":‘) 5\3 17/ Z lfj
Pr(¢(x),z6) = Pr(2) Pr(¢(x) | z, 9)

A D s} “’&’?B

@ The (log) likelihood to be maximized:

L(r,6; 4(x)) = 1Z|ogmz

s.t. m; >0 and Zm—l

e Problem: (,“L' M( ') ,a-‘ﬁm«-/. LL({( 6 qs('*-))

8Section 7.8 onwards of cs725/notes/classNotes,/misc/CaseStudyWithProbabilisticModels. pdf
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Parameter Estimation for Mixture Models®

@ Decomposition of the joint distribution

Pr(¢(x),z0) = Pr(z) Pr(¢(x) | 2,0)

@ The (log) likelihood to be maximized:
LL(m,0; p(x :12|ogPr< ( > ) Zlog Zw,f,( ( );0/)

s.t. m >0 and Eﬁ/zl. Tf‘ US'C q,.nco\(f- mccl .

@ Problem: log cannot be distributed over a summation!!
g \Pco\l‘d" wntutho?

rrrench )

8Section 7.8 onwards of cs725/notes/classNotes/misc/CaseStudyWithProbabilisticModels. pdf
November 7, 2016 13 / 64




Parameter Estimation for Gaussian Mixture Models

@ Need to maximize LL(m, pu, X; p(x)) = ;Zlog |:Z 7T/N< ( ) ;M/,E/> stmi>0

and im: 1. "(MWB

° erte down the necessary optimality conditions for this maximization prolglem subject to
its associated inequality and linear equality constraints
@ Setting gradient w.r.t each u; to 0 we get:

" \ LT N(‘#’("‘S}J MZ,Z?) 21‘(47("8)“)/
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Parameter Estimation for Gaussian Mixture Models

o Need to maximize LL(m, p, ¥; p(x)) = ;Zlog ZW/N( ( );u;,E,) stm>0

K
and Zm: 1.

@ Write down the necessary optimality conditions for this maximization problem, subject to
its associated inequality and linear equality constraints
@ Setting gradient w.r.t each u; to 0 we get:

ij :N(¢< )“”E’> X{l(cb(x(f))_m):o

Zwv( (x9) 51 51)

Ei_l is non-singular and therefore remaining expression must be 0.
—— R —
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The EM Trick

(w)\f(czﬁ xU) 5 L 2 ( (J)>_M,-) . -

& (inm/\/ ( : i, 2

@ No way to solve this in closed form to get a clean MLE estimate for p;!

23PN o0 146
= f(cazdU($eD12)
e

Mcm\x'isw‘r
< Yo Z;
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The EM Trick V4 (z:) C}('Jt’)} ;",v?-(zt\ﬂ'l’))"\

iym@(}{m)m —0

Zm/\/ (gb <x0)> s I 2/) eccu.\\'

P (%\¢(‘(ﬁsj
fict’cﬂ

@ No way to solve this in closed form to get a clean MLE estimate for u,' m( x€C:

@ Note that :N (d) (X(j)) " E) =Pr <z,-
{Z mN <¢ (XU)) s EI):l

=1

=1

b (x(f))> and comprises the E-Step.

@ Pretending as if PL(Z,- ¢ (x(f))> is independent of y; and E in
\

e 3266 §07)
asf s |5\gno\.m__> ¢ (= iv_‘(zllc(;(m»
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The EM Trick

& ﬂwf<¢(xw);uhzg

j:1 [ZK: mN (¢ <X0)> A, 2/)
=1

@ No way to solve this in closed form to get a clean MLE estimate for y;!
N (¢> (X(j)) Wiy Ei)
@ Note that =Pr <z,-

{fj - (¢ () 2,)}

=1

<¢@@)—m):o (3)
|

b (x(j))> and comprises the E-Step.

@ Pretending as if Pr <z,-

¢ (xU))> is independent of p; and %; in (3),

6))o) 7 ) mepe st 5

ST Pr| z|o (x0)

Ejn;l PI’ <Z,'

o We get the M-Step: ;=
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M-Step using (Approximate) Necessary Optimality conditions for GMM

M-Step or the Maximization Step

Z Pr (z,

Mi—

0(x9) )o (x9)

Z Pr <z,
> Pr (z,-

)-)

Q;eghln!i

S
updates

sc.hg‘:}?

b

L m

Z Pr <z,

=1

(e ,W,_%ipr@ o(9))

)
2P (e () (¢ (69 ) (o
)
)

Membe sh
Qucdache
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E-Step using Bayes Rule for GMM

E-Step or the Expectation Step
& (X(i)) >

Pr <z,- ) (x(f)>> _ KWiN(ﬁb(X);Mi, )
> N (6(x); 11, 2)
=1

For the posterior Pr <z,-

e November 7, 2016 17 / 64



Revisiting E and M-Steps for GMM

Example 2 EM algorithm [Bashop book| 1] and sts web sate]
o #“_;ﬁ 1 ( *‘-:$ ]

Jmhati 2e T

w5 E‘@C‘““ »“g\? M@Cnﬂ‘u\ﬁ cq A<D

. | d I { \-
{ ¢ # 1

e Agan gl ”Zf"«r@
igure: | oa’EM on Mixture of Gaussiansy = 5 - = 3 wac




EM More Formally: Reflections on the E and M Steps

@ Necessary Optimality conditions do not yield any closed form solution

@ Instead, one can continuously alternate between the E-Step and the M-Step until
convergence

@ This is the idea behind the EM Algorithm

@ We will explain the EM Algorithm for the more general complete data loglikelihood
formulation

LL(B; 6(x),7) = — log Pr(9(x), )

and show its convergence

e November 7, 2016 19 / 64



The EM Algorithm: More generally (OT')(\(-,{\A])

e Given a predictive distribution g(z|¢(x)), the expected complete data log-likelihood is
LLE(0: ¢(x)) = D _ a(z]6(x)) log Pr(6(x), 2 0)

is an auxilliary function that gives a lower bound on the actual log-likelihood we want to
optimize

@ The actual log-likelihood under iid assumption is:
1 & .
. = — (’) .
LLG;90x)) = 73 log {}szrw (x) ,z70>}

/

T
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Lower-bound Theorem A st
. T . =
For all # and every possible distribution q(Z|@./\,-_’—— QUS
LL(B; 6(x)) > LTe(6;0(x)) + ~-H(a)

(Vs .
Equality holds if and only if Cocavt ney

9(zl(x)) = Pr(z|¢(x); 6)
E siey

Bosic EMvear Wek on Swf_jde

< VI' m\r\\m‘ 7'05

Proof: (Optional)

9That is, invoking Jensen's inequality

November 7, 2016
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Lower-bound Theorem
For all # and every possible distribution g(z|¢(x)):

LL(B; 6(x)) > LLE(6: () + ~-H(a)

Equality holds if and only if

q(z|6(x)) = Pr(z[o(x); 0)
Proof: (Optional)

LL(0; ¢(x)) = % log {Z q<z‘¢(x))%}

Since log is a strictly concave function®

L5 660) 2 = 3 a(e]6()) og Pr(6(x), 21 0) — = 3 a(a]9(x) log (sl ()
LLg(059(x)) H(a)

9That is, invoking Jensen's inequality

November 7, 2016
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Proof continued (Optional)

is a constant, that is,

Equality holds if and only if PT("I%(‘)?T)

q(z|¢
q(z|d(x)) o< Pr(o(x),z;0) = Pr(z[¢(x); 0) Pr(¢(x); 0) o< Pr(z|¢(x); 6)

This can happen if and only if g(z|¢(x)) = Pr(z|¢p(x); 0).

e oty o e B



EM Algo as Coordinate Descent on Lower Bound

ma LL(0: 6(x)) > max max LLE(0: 6(x) + ~ H(a)

The EM algorithm is simply coordinate ascent on the auxilliary function
LLE(8; 6(x)) + 7 H(q).-
o Expectation Step t: g(tt!) = argmax LLE(OW; ¢(x)) + L H(q)

= argmax — D (q(z|6(x))]| Pr(z 6060 )) +log {6(x):09 }

q
o Since, LLE(0\; ¢(x)) + = H(q) < log {gb(x);ﬁ(t)}, maximum value is attained for
q(zl¢(x)) = Pr(z|¢(x): 0)

@ Thus, the E-step can be summarized by

¢t (2] (x)) = Pr(z|é(x); 61 ()

e November 7, 2016 23 / 64



Special Case: Revisiting E-step for GMM (Tutorial 10)

(0

Initialize p; ) to different random values and ZEO) to /

(x9) .1 g)

For the posterior Pr <z,-

z; ¢<x(j)>,,u,2> = it

pAErD (

November 7, 2016
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EM Algo as Coordinate Descent on Lower Bound

max LL(O; p(x)) > max max LLE(O; d(x)) + M
q
The EM algorithm is simply coordinate ascent on the auxilliary function
LLE(8; 6(x)) + 7 H(q)-
e Maximization Step t: Since H(q) is independent of 0,
61 = argmax LLE(6; ¢(x)) + L H(q!™V)) = argmax » ~ q(z|¢(x)) log Pr(¢(x), z; 0)
0 0

VA L i
@ Like ordinary maximum likelihood estimation problem, but using predicted values of z.

@ The M-step may not have a closed form solution, in which case, it may be required to
resort to approximation techniques.

M\ -oYe Pt stz € CxTeckt—A (A

e November 7, 2016 25 / 64



Special Case: Revisiting M-step for GMM (Tutorial 10)
> (alo (< ),9>¢<xw>
zPrfﬂ(
o(x0)0) (o) - f“)(qs )

i pAtHD) (
=1

+1) .

t Z Pr (t+1) <

(t+1) _

LA E
Z(-Hl) =1

e November 7, 2016 26 / 64



EM for GMM: Summary

@ |Initialize MEO) to different random values and Z‘,(O) to I Let t=0.

10) (x@> ,0) using ,u,gt) and ©!”

i
—

o (XU)) ,0) and El(-tH) using

—

—

@ Compute PAtHY) <z,-

i
P S— ——

PAt+1) (z,- o <x0)> ,9> and /L,(H—l)

@ If parameters have changed significantly, increment t by 1 and go back to Step 2.

@ Compute 75 and ugtﬂ) using PAtTD) <z,-

e November 7, 2016 27 / 64



K-Means Clustering Algorithm or Hard EM ¢ \° \
el ’ g - \ <
) A PRSI ?i.’l' \
C C 2
(0)

O |Initialize ;' to different random values. Let t = 0.

@ Posterior Pr(z; | ¢ (XU)) ,0) € [0,1] replaced by P;j € {0,1}. Compute cluster
memberships P;; that minimize the sum of squared distance of points to existing centroids

© Compute ,u,(tH) that minimize the sum of squared distance of points to the centroid of
the cluster assigned in the previous iteration

@ If parameters have changed, increment t by 1 and go back to Step 2.

e November 7, 2016 28 / 64



K-Means Clustering Algorithm or Hard EM

o9

or

Different cluster analysis results on "mouse" data set:

Original Data

o

&%
OQ‘ f
s T

ﬂ‘ |§"“.’
¥

0 01 02035 0403 06 0T OB 09 1

09

os

k-Means Clustering

:&

_,;m.,‘”

~
& o3
o

09

os

EM Clustering

ConsexNaiwe

Figure: Comparison of K-Means with EM (Mixture of Gaussians). Source: Wikipedia
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K-Means Clustering Algorithm or Hard EM

Q Initialize M(O) to different random values. Let t = 0.

i

m K
@ PA cargmind " Pyllo (x(j)> )

=1 =1

(1) — 1 and PIEY =

Solution: For each j € [1..n], i* = argmlin ) (x(j)> - ,ust)||2, Pri ¥
for I # i*.

I 4 a4 November 7, 2016
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K-Means Clustering Algorithm or Hard EM

Q Initialize MEO)

m K
Q@ Pt ¢ argm;nz;lzl: Pijll¢ (XU)> — | CE S}CQ
J= —

N2, PR = 1and PEFY =0

rl*

to different random values. Let t = 0.

Solution: For each j € [1..n], i* = argmlin ) <x(j)>
for I # i*.

o M (t+1) — argmlnzz p (t+1) ”¢ <X(j)> _ ,Uf/||2 (_N\ 6}(“”)
=1 I=1 W
Same &S

(t+1)
oy S P00 ()
t+1
SR P
Q If any parameter P;; has changed, increment t by 1 and go back to Step 2.

Solution: y;

e November 7, 2016 30 / 64



K-Means Clustering Algorithm or Hard EM (Tutorial 10)
fgas\'“ '“'\Q'ﬂ E‘ﬂ

@ Claim: The K-Means Clustering algorithm will converge in a finite number of iterations
@ Proof Sketch: At each iteration, the K-Means algorithm reduces the objective

> Z,’;l Pl (xY) — w|? and stops when this objective does not reduce any further.

» m K
© Hintl: Y = argmin S~ S Pyl (x7) I

=1 =1
m K ( )
Q Hint2: (1) = argmin P g (x(j)> — w)?
@ Hint3: Only a finite number of combinations of P;; are possible. u\e-;a\wO

Need'. Wk e’“D

b3 A‘M eayeS
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Disadvantages of K-means & Alternatives — <> X
s - \\, ‘\\
VAR
\ : - -gq 1! } i‘\x
@ Fixed value of K: Right value of K critical to success \\\ 1 -z o «
@ Sometimes problem owing to the wrong initialization of 11;'s '(‘\\;\,,f-“‘x
© Mean in “no-man’s land”: Lack of robustness to outliers ,“_KQ
: . 10
Variants of K-means rMean f}w ved

@ K-mediods: Assumption is Cluster's centroid coincides with one of the points. That is,
wi= o 1 xU)) for some value of j. Austed in
B
= Each step of the K-mediod algorithm is K(n — 1)n ~ O(Kn?) "o wans land

© K-modes: For discrete valued attributes: (C‘Ué\g-{\:\) 51“.{) ¥5- 1A S?awj
x[,u,']q = argmax Z (g (XU)) V) Vg=1...m

ve{l,...Vq} xUeC

Flha mrA\or)\ s B 'F'ﬂA mfm\ot'fS'\NP

For more details read Chapter 7 of Jiawei Han's book
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Hierarchical Clustering
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Hierarchical Clustering: Two Choices

@ Bottom-up (agglomerative)
@ Top-down (divisive)

Main idea: lteratively merge clusters that are closest (or break clusters that are furthest
apart): NEED A NOTION OF DISTANCE BETWEEN POINTS
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Distance Measures

Denoted by dj; (or sj; respectively): is distance between any two datapoints i and j.

@ Mahalanobis Distance (discussed for Gaussian):
|6(x) — |3 = (6(xD) = p(xD) TE"1(p(x)) — ¢(xY))). EM algorithm has this in
some sense.

@ If ¢(x) are numeric / ordinal (optionally normalized to ||¢(x;) — ¢ (X(J)> llp =1):

m

8GNl = (Z (¢I(Xi) — i (x(f)> )p> /e

=1

@® p = 1: Manhattan distance
® p = 2: Euclidean distance
@ p > 2: Minkowski distance
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Distance Measures (binary features)

© If ¢(x) are binary, measures based on contingency matrix defined over any two features ¢;

and ¢j.

if p+ g+ r+ s= n, some symmetric and asymmetric measures

0 dj= L symmetric

0 d;= ZTJF; symmetric (odd’s ratio)
© dj=1—(p/n): asymmetric

Q dj=1—(s/n): asymmetric

@ dj= (p+q+r) : asymmetric

(Jaccard distance: refer: http://en.wikipedia.org/wiki/Jaccard_index )
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Distance Measures (non-binary categorical features)

O If ¢(x) are discrete then :
> dj=1- ﬂ%ﬁn:m& : Symmetric measure
» Expand ¢ to multiple binary features ¢y ... ¢y, if the original ¢, takes k values. Now we can
have the various symmetric and asymmetric measures defined for binary features above.

@ If ¢(x) is a combination of numeric/ordinal and discrete

tOt_d,y = wy % dzl_iscrete + wy dZ_um/ordmal stow 4wy =1, w,wye [0, 1]
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Hierarchical Clustering
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Bottom-up Hierarchical Clustering

@ |Initially every point is a cluster of its own

@ Iteratively merge closes clusters (single-link, complete-link, average distance): Merge
clusters that have the least mutual distance. For top-down: Which clusters to break.

© When to stop merging clusters (closely linked to the distance measure). Stop when the
distance between two clusters is > 6 (some threshold). For top-down: When to stop
splitting the clusters.

ISSUES:
@ Can't undo clustering decision.
@ Lack of flexibility in choice of clustering algorithm
© Do not scale well.
ADVANTAGE: Easy to visualize. So a choosen k from hierarchical clustering can be used in

k-means or any other clustering algorithm run from scratch.
Some of the algoritms studied here were Birch clustering and Chameleon.
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Extra Slides:
Derivation of MLE and MAP for GDA,
Another Generative Distribution with MLE and MAP: Multinomial

Distribution, Multinomial Naive Bayes,
Frameworks for Multilabel Classification
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Multinomial distribution

@ Multinomial distribution is similar to the binomial distribution but for a variable that
could assume one of t possible values Vq, Vo ... V;

o Eg: In the case of the toss of dice, t =6
o Pr(X=Vj)) =
@ Given n iid observations of a multinomial random variables, with m; being the number of

times X = V; was observed, the likelihood will be:
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Multinomial distribution

@ Multinomial distribution is similar to the binomial distribution but for a variable that
could assume one of t possible values Vi, Vo ... V;

o Eg: In the case of the toss of dice, t =6
o Pr(X=Vj)) =
@ Given n iid observations of a multinomial random variables, with m; being the number of

times X = V; was observed, the likelihood will be:

n!

—_— Mmool
'”nt!lh Pt (5)

L(m,...,ngp,. ., i) = !
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Finding the conjugate prior

Question: What will be conjugate priors for p;'s, the parameters of Multinomial?



Dirichlet Prior for Multinomial

t
P (g, ... pelan, .. o) o Hp‘i"’_l
=1

e Normalizing (to make the prior a density function):



Dirichlet Prior for Multinomial

t
P(/le"'ut|a17-'-at) OCHN?i_l (6)
i=1

e Normalizing (to make the prior a density function):

/ / P(;Ll,...,u,,|oz1,...ozt):1
M1 Mt

T t_ a t .
P(m,...,ut|a1,...at)=@Huﬂ 1 @)

[[T(e) =
I=1

which, is Dir(a; ... a;) - the Dirichlet Distribution.
Recall I'(n) = (n—1)! when n e N/

@ ... a generalization of Beta distribution, just as multinomial is generalization of Bernoulli
distribution
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Dirichlet as Generalization of Beta(«, (3)

ap—1 ap—1
@ Dir(puy, pig, ..., phe; 01, ..., 0p) = % is the Dirichlet conjugate prior for
multinomial /categorical distributions

o EDir(al,...,af) [“l] = _tO[L

>
=1

@ Dir(1,...,1) is the uniform distribution!
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Posterior Probability for Multinomial

P(x1 . X i1 5o prt ) P01 ..
P (M1, o pelxa, .Xn) = o Lf(il,ﬁ;),,) (et

F(Z =10t n H (aj=1437% 1 X)) (8)
J

P(ul,...pt]xl,...x,,) = —

HF(aj + ZXkJ o
k=1

Jj=1
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Summary for Multinomial

@ For multinomial, the mean at maximum likelihood is given by:

N 221 Xj,/
127 -

e Conjugate prior follows Dir(a; ... ap)
e Posterior is Dir(...ay+ > Xj...)
@ The expectation of 4 for Dir(ay ... «a,) is given by:
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Summary for Multinomial

@ For multinomial, the mean at maximum likelihood is given by:

. Z,ll Xj.1
= =L )
e Conjugate prior follows Dir(a; ... ap)
e Posterior is Dir(...ay+ > Xj...)
@ The expectation of 4 for Dir(ay ... «a,) is given by:
(65} (65}
e (10

The expectation of  for Dir(...a;+ .7 Xj,...) is given by:
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Summary for Multinomial

@ For multinomial, the mean at maximum likelihood is given by:

. 21 X
= =L ©)
e Conjugate prior follows Dir(a; ... ap)
e Posterior is Dir(...ay+ > Xj...)
@ The expectation of 4 for Dir(ay ... «a,) is given by:
(65} (65}
e (10
@ The expectation of x for Dir(...ay+ > Xj...) is given by:
E . a1+EjX',1 CJZ/-I—ZJ-X'J 11
[ﬂ]Dir(...aH—ZZ:l %) T Sk SSarkn (11)
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(Multinomial) Naive Bayes

o < xW, C; >: Tuple with example xU) belonging to class C;. Pr(C;) is prior probability of
class C;.

° ¢ (XU)) yeeeyOm (xU)): The feature vector for xU)

0 P¢q(x)|C) ~ MU/t(#ii ,ut ,) that is, each feature ¢4 follows multinomial distribution
Bayes
Q[vi.. thrl] N | V?q] <[V VI]: Set of values that could be taken by each of
$1, P2 . .. m respectively

Q (i b -l opd ] [0 p) ]2 Parameters for each of ¢1, ¢ ... dm
respectively for class C;

P(¢1(x) .. H P(¢q(x : Feature are independent given the class
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ML for Naive Bayes
ML Estimators: |finmy, f’rML(C;)}. or more simply [/l, FA’r(C,-)}

n m
~

i1, Pr(C) = argmax [ [ Pr(c(X)) * [ Prdq(Xi)|c(Xe))
wPr(G) 1 g=1

| C‘ m tq

= argmaxH (Pr(C,-))#C’ * H H (uzi)nj,i
/L,PI’(C) i=1 q=1_/:1

where,
#C; = No. of times ¢(Xx) = C; across all k's in the dataset

nz,. = No. of times ¢4(Xk) = Vj and c(Xk) = C; across all the k's

nd =" 6(dq(Xe), V)6 (c(Xki), C)
k
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IC]

= Z 5(c(Xk), G) Pr(C))

PRI = 3650,V

o & = ) E DA



Il

= Z 5(c(Xk), G) Pr(C))

Pr(¢g(Xi)lc Za Pq(Xk): d o)

So, the final log-likelihood objective function is:

|<]

argmax [Z(#C log Pr(C;) + ZZ ;log( ,uJ, ] (12)

wprie) =iz j=1 j=1

such that Zld Pr(C) =1, Z 4 MJ, =1 Vaq,i, Pr(C;) €[0,1] Viand M;—f; €[0,1] Vaq,ij
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Solving Naive Bayes through KKT Conditions

Intuitively, working out the KKT conditions on the above objective function, we get the
Maximum Likelihood Naive Bayes estimators as follows

q
g T n q
Zj’:l nj”,'
~ C:
Pr., = _#G
> #C;
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Tutorial 10

Can you now do Bayesian Inference for Naive Bayes using the Dirichlet Conjugate Prior for
each ¢g(x)?
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Derivation of MAP and Maximum Likelihood Estimates for Multivariate
Gaussian: Recapped from https://www.cse.iitb.ac.in/~cs725/
notes/lecture-slides/lecture-06-unannotated.pdf



Likelihood estimates for each class C;

Let D; C D the subset of data points that belong to class C;. Let D; = x{...x],,
1 &

0 LL(K}.oixhy 11 X)) = = In(2m) = Znl|Zf] = 5 D (8(x) — ) TE7 (6(<) — ).

j=1
@ Setting V,,LL =0, and Vy,LL = 0 for each i individually , we get
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Likelihood estimates for each class C;

Let D; C D the subset of data points that belong to class C;. Let D; = x{...x],,
iy m m 1 - i Ty—1 i
© LL(Xq.Xpm |piy i) = = In(2m) — - In[|Zi]] — 5 D ((B0x) = ) TS (S(xD) — ).
=1
@ Setting V,,LL =0, and Vy,LL = 0 for each i individually , we get

] & .
Q V,lL= [—5 ;2@5(4) - ui)] =0

mj mj

@ Since 3; is invertible, Z((ﬁ(xj’) — i) =0e, fii= = Zq&(xj’)
j=1 =1
. 1 X .
0 £i— L 3 (0x) — n)(0() — )"
=
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Estimates based on all n | = E m; | instances

((xl }/1) (xnv}’n)) = Pr (Xl---xn | )’1---Yn) Pr ()’1'--}/n)
K
H Pr (xl | i, E,-) Pr(C)™ =

o LL ((xl,yl), x,,,y,, Z LL(x xfm | pi, i) + milog Pr(G;)

K m;
- (Z%”In@wxwéz«w ) — 1) TS (0] ) +zm,logpr

i=1 =1
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Estimates based on all n | = E m; | instances

o LL ((x17y1), cee (men))

K mi
(Z—%In@wzi)—éZ((qx) ) TS (6 (6) ) zm,logpr

i=1 =1
mj
o Like before, setting V,,LL =0, and Vy,LL =0: fi; = % Z ) and
—1

_ N _ 3T
~—;,Z (6(x) — )

j=1

e Also setting Vp,(c,)LL =0, Pr(C,-) = f,’glg
j=1"j
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Conjugate Prior & MAP for Univariate Gaussian

RECAP:
o P(x) ~ N (1, 0?)
@ The conjugate prior for mean of univariate gaussian distribution in the case that o2 is
known is

P(p) = N (0, 75)
o P(ulx1...xn) = N(pin, 073)
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Conjugate Prior & MAP for Multivariate Gaussian

@ Rearranging terms for 1 ~ N (p10,0%9) and x ~ N (p1, 0?)

1 1 n
02 o2 o2
n 0
Hn n .
— = —5 Hmie T 1o
oz o

such that Pr(u|D) ~ N (pn, 042). Here n/o? is due to noise in observation while 1/02 is due to
uncertainity in p
@ Extending to Bayesian setting!! for multivariate case with fixed ¥
o(x) ~ N (1, 2), p~N(po,Xo0) = Pr(u|D) =N (pn, En)

o=yt 4 ant
Sy e = 1S fimie + g

MAP estimates ., and X, obtained by solving above linear system.

11https://en.wikipedia.org/wiki/Multivariate_normal_distribution#Bayesian_inference
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Extensions

@ Recall assumption: ¢(x) is generated using exactly one N (u;, X))
@ What if this assumption were violated?
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Extensions

@ Recall assumption: ¢(x) is generated using exactly one N (u;, X))
@ What if this assumption were violated?

» Supervised Multi-labeled: What if an example ¢(x) is known to belong to multiple classes
(Gaussians)?
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Extensions

@ Recall assumption: ¢(x) is generated using exactly one N (u;, X))
@ What if this assumption were violated?

» Supervised Multi-labeled: What if an example ¢(x) is known to belong to multiple classes

(Gaussians)?

P(p(x)|Cq) = N (pig; Xq)
» Unsupervised Mixture (of Gaussians):
K K
Pr(p(x)) = > Pr(p(x), C=z) = Y Pr(C = 2)N (1, %)
=1 =1
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Supervised Multi-labeled

Building a K-class discriminant by combining a number of two-class discriminants

@ one-versus-the-rest: In this approach, K—1 classifiers are constructed, each of which
separates the points in a particular class Cx from points not in that classes

@ one-versus-one: In this method, (’2() binary discriminant functions are introduced, one for
every possible pair of classes.

Can you think of problems with each of the above?
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Multi-labeling and Nil-labeling

Attempting to construct a K class discriminant from a set of two class discriminants can lead
to multi-labeled and nil-labeled regions. Multilabeled regions marked with '?’.
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OPTIONAL: Unbiased Estimators

e Estimator e(#) is called an unbiased estimator of ¢ if E[e(0)] = 6

K K

If €(0), ex(6), ..., ex(f) are unbiased estimators and Z Ai =1 then ZA,-e,-(@) is also
=1 i=1

unbiased estimator

E(i:l) _ ni — 1

Xi=> f],- is a biased estimator.

1

An unbiased estimator for X; is therefore
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OPTIONAL: Sufficient statistic

e sis a sufficient statistic for 8 if Pr(D|s, 6) is independent of
< iff Pr(D|0) can be written as Pr(D|6) = g(s, 8)h(D).
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OPTIONAL: Sufficient statistic

e sis a sufficient statistic for 8 if Pr(D|s, 6) is independent of
< iff Pr(D|0) can be written as Pr(D|6) = g(s, 8)h(D).
nj
e For Gaussian, ji; = — Zcb(x;) is a sufficient statistic for § = u; because:
=1
Pr(D|ui) = g(fii, i) h(D), where
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OPTIONAL: Sufficient statistic

e sis a sufficient statistic for 8 if Pr(D|s, 6) is independent of
< iff Pr(D|0) can be written as Pr(D|6) = g(s, 8)h(D).
nj
e For Gaussian, ji; = — Zcb(x;) is a sufficient statistic for § = u; because:
=1
Pr(D|ui) = g(fii, i) h(D), where

nj

_ i _ )Tl i _ .
Pr(Dl) =[] — XP< (609) = 1) 5} ($64) u))

m 1 €
=1 (2m)2|Xi|2 2

g(ﬂmlevﬂi) = exp <__N, E M/ + H IHI >

A 1
h(’ﬁﬁé---%m)zm ( 1/22¢ ()% ))
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