Gaussians, EM Algorithm, K-Means etc

Lecture 27: More Unsupervised Learning: Generative Models, Mixture of
Instructor: Prof. Ganesh Ramakrishnan



Discriminative & Generative Classification Models

e Goal in classification: Assign an input x with feature vector ¢(x) € R™ to one of K
discrete classes C, where ke 1,.... K.

e Discriminative Models (so far): Directly model P(C;|¢(x)). E.g.: Logistic Regression and
Neural Networks
o Generative Models: Model P(¢(x)|C;) for each i

» Continuous Attributes = P(¢(x)|C;) ~ N (ui, X;) for Gaussian Discriminant Analysis
» Discrete Attributes = P(¢(x)|C;) ~ Mult(p1, ..., pm) for multivariate Bernoulli Naive Bayes!
» Obtain the posterior using Bayes Rule

MTutorial 10.



Discriminative & Generative Classification Models

e Goal in classification: Assign an input x with feature vector ¢(x) € R™ to one of K
discrete classes C, where ke 1,.... K.

e Discriminative Models (so far): Directly model P(C;|¢(x)). E.g.: Logistic Regression and
Neural Networks

o Generative Models: Model P(¢(x)|C;) for each i

» Continuous Attributes = P(¢(x)|C;) ~ N (ui, X;) for Gaussian Discriminant Analysis
» Discrete Attributes = P(¢(x)|C;) ~ Mult(p1, ..., pm) for multivariate Bernoulli Naive Bayes!
» Obtain the posterior using Bayes Rule P(Cj|¢(x)) = PP C)P(C)
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Gaussian (Quadratic) Discriminant Analysis

© A canonical example of Generative Model
@ Example K class case:
P(¢(x)[C1) = N (p1, 1)
P(¢(x)|Ci) = N (pi, 2i)
P(¢(x)|Ck) = N (K, Xk)
© Assumption: ¢(x) is generated using exactly one N (u;, ;)

Q In the case of K = 2, decision surface will be {¢(x) | P(Ci|p(x)) = P(Ca|p(x))}. The
surface will be quadratic

@ Hence, this classifier is also referred to as Quadratic Discriminant Analysis (QDA)



Gaussian (Quadratic) Discriminant Analysis?

accuracy = 76.00%
»

» #  non-versicolor
» #  versicolor

sepal width

»-e »-e

75

sepal length

Figure: lllustration of Quadratic Discriminant Analysis

*http://i.stack.imgur.com/OKYBH. png
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Why Quadratic Separating Surface?

o If ¢(x) ~ N (ui, X)) (where ¢(x) € R™) then

3 : exp_(¢(X) — 1) T8 (P(x) — i)
(2m) 3|52 2

Pr(o(x) | Gi) =

@ So, the separating surface is ¢(x) such that {¢(x) | P(Ci|p(x)) = P(Ca|¢p(x))} that is,
{p(x) | P(¢(x) | C1)P(C1) = P(¢p(x) | Co)P(C2)} that is, after taking logs, ¢(x) such
that



Why Quadratic Separating Surface?

o If ¢(x) ~ N (ui, X)) (where ¢(x) € R™) then

(D) | C) = —— L =P =) EH(O() — 1)
Prio( | ) = ey exp .

@ So, the separating surface is ¢(x) such that {¢(x) | P(Ci|p(x)) = P(Ca|¢p(x))} that is,
{p(x) | P(¢(x) | C1)P(C1) = P(¢p(x) | Co)P(C2)} that is, after taking logs, ¢(x) such
that

—(@() = p1) BT B(X) = pin) + (D(%) = p12) 85 ($(x) — pra) = b
where b contains terms independent of ¢(x).

@ This is indeed a quadratic equation!



Maximum Likelihood estimates for QDA

Assuming test point x belongs to exactly one class, = find C* such that,

C = argmax log[P(x|C;) P(C))] = argmax log[V (x| i, 2i) P(Ci)] (1)

We can obtain MLE /i, 3; and |5\r(C,-) by extending? derivations for Multivariate Gaussian and
use in (2)

@ Setting V,,LL =0, and Vy,LL = 0:

3Recap from lecture-06-unannotated.pdf as well as extra (optional) accompanying this-lecture
D
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Maximum Likelihood estimates for QDA
Assuming test point x belongs to exactly one class, = find C* such that,

C* = argmax log[P(x|G)P(C)] = argmax log[A'(x|s1;, %) P(C))] (1)

We can obtain MLE f;, 2,- and Is\r(C,-) by extending3 derivations for Multivariate Gaussian and
use in (2)

m;
o Setting V,,LL =0, and V,LL = 0: ji;= = Y (x]) and
j=1

mj

A 1 . .
Yi=— Z(qﬁ(xj’) — i) (p(x)) — fii) T....called the empirical co-variance matrix in statistics
m; <
j=1
e Also setting Vp, (¢, LL =0, PAr(C,-) =

Zszl m;j
® [ij ~ N(ui,X;) and since E[fi;] = p;, fi;i is an unbiased estimator. [Extra optional slides]
@ Naive Bayes Classifier: Each X; assumed to be diagonal
3Recap from lecture-06-unannotated.pdf as well as extra (optional) accompanying this-lecture
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Bayesian estimation for QDA

Assuming test point x belongs to exactly one class, = find C* such that,
C" = argmax log[P(x| ;) P(C;)] = argmax log NV (x]u;, 3;) P(C))] (2)

We can obtain MAP [, 3 and PAr(C,-) by extending* derivations for Multivariate Gaussian and
use in (2)
e Extending to Bayesian setting® for multivariate case with fixed (non-probabilistic) ;
S(x | Ci) ~ N (i, ), pi~ N (7, 57) = Pr(lD) = N (u]™, =)

=)™ = (50) e memy

N1 1. -1
(S 1l = mi (50) 7 fumte + (E?> I
MAP estimates 1" and X" are obtained by solving above linear system.

o As before, Pr(C)) = —2

( I) S‘f—1 mj
*Recap from lecture-06-unannotated.pdf as well as extra (optional) accompanying this lecture
5https ://en.wikipedia.org/wiki/Multivariate_normal_distribution#Bayesian_inference
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https://en.wikipedia.org/wiki/Multivariate_normal_distribution#Bayesian_inference

Tutorial 10

@ Suppose, in our generative model, the points from each class are generated using a
multivariate Gaussian with a different mean p; for each class C;, but a shared covariance

matrix X:
1 e —(p(x) — 1) TS (D(x) — i)
(23|32 2

@ Show that the Maximum Likelihood estimates are:

P(¢(x)|Ci) =

> = . DD (@) = p) () — )T

i=1 XEC,'

@ In fact, this has a Linear separating surface and is therefore called Linear Discriminant
Analysis (LDA)



Tutorial 10: Linear Discriminant Analysis®

as Linear Discriminant Analysis

4Cguac;lrat:ic Discriminant Analysis

versicolor
e0 e virginica

®e virginica
4.0

35 35
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Figure: Illustration of Linear vs. Quadratic Discriminant Analysis



http://scikit-learn.sourceforge.net/0.6/auto_examples/plot_lda_vs_qda.html

Unsupervised Mixture of Gaussians

@ Recall assumption: ¢(x) is generated using exactly one N (u;, X))
@ What if this assumption was violated?



Unsupervised Mixture of Gaussians

@ Recall assumption: ¢(x) is generated using exactly one N (u;, X))
@ What if this assumption was violated?
» What if an example ¢(x) belongs to multiple classes (Gaussians)?

Pr(6(x)|Cp) = N(11p, Xp)
Pr(¢(x)|Cq) = N(0(x) | 11g, Zq)

» What if the membership of an example to the different classes is not known?

K K

Pr(¢(x)) = Z Pr(¢(x), C= z) = Z Pr(C = z)N((x), i, ¥1)

D November 7, 2016

10 / 64



Unsupervised Mixture

@ Z€{z,z,...,2zx}: Multinomial variable indicating mixture component & K = number
of (hidden) classes or mixture components
@ ¢(x): Random variable (vector), with distribution specified, conditioned on different
values z; of Z
Pr(¢(x) | zi;07) ~ fi(x; 0))

@ The finite mixture model is defined as

"Proportion of the population in subpopulation /.



Unsupervised Mixture

e Ze€{z,z,...,2z}: Multinomial variable indicating mixture component & K = number
of (hidden) classes or mixture components

@ ¢(x): Random variable (vector), with distribution specified, conditioned on different

values z; of Z
Pr(o(x) | zi10;) ~ fi(x; 0))

@ The finite mixture model is defined as
K K
Pr(p(x)) = > Pr(z)fi(x;0;) = > mifi(x;0;)
i=1 i=1
T = [m,m,..., k) and 0 = [01,02,...,04] are the paramaters of the mixture model,

with a fixed value of k.

e Quantities Pr(z;) = 7; are mixing weights’

"Proportion of the population in subpopulation /.



Example: Gaussian Mixture Model (GMM)

@ The density of each mixture component is Gaussian with 6; = (u;, %;).
fi(d(x); 67) = N((x) | i, i)
@ Pr(¢(x)) is then called a mixture of Gaussian
Pr(¢(x) | zi0:) ~ fi(x; 0))

Gaussian Mixture Model (GMM) is itself NOT a Gaussian!

@ Supervised setting: We learnt (1, 2;) using Maximum Likelihood/MAP when a (unique)
z was observed for an x

@ Unsupervised setting: Learning parameters 0; = (u;, %) in the presence of incomplete
data (only instances of ¢(x))



Parameter Estimation for Mixture Models®

@ Decomposition of the joint distribution

Pr(¢(x), z,6) = Pr(z) Pr(¢(x) | 2,0)

@ The (log) likelihood to be maximized:
LL(m,0; p(x —mZIogPr< ( >, ) mZIog Zw,f/( ( );9,)

s.t. m;>0 and Zm = 1.
=1
@ Problem:

8Section 7.8 onwards of cs725/notes/classNotes/misc/CaseStudyWithProbabilisticModels.pdf
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Parameter Estimation for Mixture Models®

@ Decomposition of the joint distribution

Pr(¢(x), z,6) = Pr(z) Pr(¢(x) | 2,0)

@ The (log) likelihood to be maximized:
LL(m,0; p(x —m2|ogPr< ( >, ) mZIog Zw,f/( ( );0,)

s.t. m;>0 and Zm = 1.
=1
@ Problem: log cannot be distributed over a summation!!

8Section 7.8 onwards of cs725/notes/classNotes/misc/CaseStudyWithProbabilisticModels.pdf
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Parameter Estimation for Gaussian Mixture Models

m K
@ Need to maximize LL(m, u, X; p(x)) = # Z log Zﬂ//\/ <qz5 (XU)> s pbl, E,) stm >0
j=1 =1

K
and Zm =1.
=1

@ Write down the necessary optimality conditions for this maximization problem, subject to
its associated inequality and linear equality constraints
@ Setting gradient w.r.t each u; to 0 we get:



Parameter Estimation for Gaussian Mixture Models

o Need to maximize LL(m, u,¥; ¢p(x)) = mZlog ZW/N( ( );u;,E,) stmi>0

K
and Zm: 1.

@ Write down the necessary optimality conditions for this maximization problem, subject to
its associated inequality and linear equality constraints
@ Setting gradient w.r.t each u; to 0 we get:

i :N (¢< ) o Z') e (¢ (XU)) _ u,) =0
=1 S <¢ (X(j)> ” 2,)

Ei_l is non-singular and therefore remaining expression must be 0.



The EM Trick
TN (¢ (XU)> §Mi72i)
Z?T/N( ( ) M/,E/)

@ No way to solve this in closed form to get a clean MLE estimate for p;!

> (E)m)0 o
: |



The EM Trick
TN <¢ (XU)> Wiy 2;)
Z?T/N( ( ) M/,2/>

@ No way to solve this in closed form to get a clean MLE estimate for p;!
WN (¢( ) i, El)
@ Note that =Pr <z,-

{fj - (¢ () 2,)}

=1

il <¢ (x) - u,-) =0

b (x(f))> and comprises the E-Step.

@ Pretending as if Pr <z,-

¢ (x(f))> is independent of p; and X; in (3),
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The EM Trick
TN <¢ (XU)> Wiy 2;)
Z?T/N( ( ) M/,2/>

@ No way to solve this in closed form to get a clean MLE estimate for p;!
WN (¢( ) i, El)
@ Note that =Pr <z,-

{fj - (¢ () 2,)}

=1

> (6 (x9) - ) =0 o

b (x(f))> and comprises the E-Step.

@ Pretending as if Pr <z,-

¢ (x(f))> is independent of p; and X; in (3),

> Pr <z,- P (xm) > ® (xw)
o We get the M-Step: ;=

ST Pr| zijo (xW
November 7, 2016 15 / 64




M-Step using (Approximate) Necessary Optimality conditions for GMM
M-Step or the Maximization Step
() )o ()

Z Pr <z,
> Pr (z,-

)

2o (alo () (o) <) (0 () )
)
)

Z Pr (z,

Mi—

L m

Z Pr <z,

=1

m

-:%ZPr<z,

=1

()



E-Step using Bayes Rule for GMM

E-Step or the Expectation Step

o))

For the posterior Pr <z,-

Py <Zi é (X(j)>> _ KWfN(¢(X);Mi, )
> TN (9(x); 1, 3)
=1

November 7, 2016
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Revisiting E and M-Steps for GMM

Example 2 EM algorithm [Bishop book[1] and its web site]
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Figure: Illustration of EM on Mixture of Gaussians
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EM More Formally: Reflections on the E and M Steps

@ Necessary Optimality conditions do not yield any closed form solution

@ Instead, one can continuously alternate between the E-Step and the M-Step until
convergence

@ This is the idea behind the EM Algorithm

o We will explain the EM Algorithm for the more general complete data loglikelihood
formulation

LL(B; 6(x),7) = - logPr(9(x), :6)

and show its convergence



The EM Algorithm: More generally

o Given a predictive distribution g(z|¢(x)), the expected complete data log-likelihood is

LLE(0; ¢(x)) = _ q(z|$(x)) log Pr(¢(x), ; 6)

z

is an auxilliary function that gives a lower bound on the actual log-likelihood we want to
optimize

@ The actual log-likelihood under iid assumption is:

LL(O; p(x)) = % Y log {Z Pr(¢ (x“)) 7 9)}
i=1 Z



Lower-bound Theorem
For all # and every possible distribution g(z|¢p(x)):

LL(B; 6(x)) > LLE(B; 6(x)) + - H(g)

Equality holds if and only if

q(z|o(x)) = Pr(z[o(x); 0)
Proof: (Optional)

9That is, invoking Jensen's inequality



Lower-bound Theorem
For all # and every possible distribution g(z|¢p(x)):

LL(B; 6(x)) > LLE(B; 6(x)) + - H(g)

Equality holds if and only if

q(z|o(x)) = Pr(z[o(x); 0)
Proof: (Optional)

LL(B; 6(x)) = — log {Z q“““"”%}

Since log is a strictly concave function®

L5 660) 2 — 3 ale6()) og Pr(6(x), 25 0) — — 3 a(al9(x) log a(al6(x))
LLg(059(x)) H(a)

9That is, invoking Jensen's inequality

November 7, 2016
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Proof continued (Optional)

, : if Prizlé(x):0)
Equality holds if and only if q(z[(x))

is a constant, that is,

q(z|¢(x)) o< Pr(¢(x), z;0) = Pr(z|¢(x); 0) Pr(¢(x); 0) o< Pr(z|¢(x); 0)
This can happen if and only if q(z|¢(x)) = Pr(z|¢(x);0).



EM Algo as Coordinate Descent on Lower Bound

max LL(0;0(x) > max max LLg(0; 0(x) + %H(q)

The EM algorithm is simply coordinate ascent on the auxilliary function
LLE(8; 6(x)) + 5, H(q).-
o Expectation Step t: gt = argmax LLE(0W; ¢(x)) + L H(q)

= argmax — D (q(z|6(x))]| Pr(z 60060 )) +log {6(x): 09 }

q

o Since, LLE(0W; ¢(x)) + L H(q) < log {gb(x); H(t)}, maximum value is attained for
q(z|¢(x)) = Pr(z|6(x); 07)

@ Thus, the E-step can be summarized by

¢t (2] (x)) = Pr(z|é(x); 61 ()



Special Case: Revisiting E-step for GMM (Tutorial 10)

Initialize ugo) to different random values and EEO) to /

(x9) .1 g)

For the posterior Pr <z,~

z; gzﬁ(x(j)),,u,E) = it

pAErD (
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EM Algo as Coordinate Descent on Lower Bound

max LL(6; ¢(x)) > max max LLg(0; p(x)) + lH(q)
0 0 q m

The EM algorithm is simply coordinate ascent on the auxilliary function
LLE(6; 6(x)) + 7 H(q).-
e Maximization Step t: Since H(q) is independent of 6,
o+l — arggnax LLE(0; ¢(x)) + LH(gtHD) = arg(r;nax Z q(z|p(x)) log Pr(¢(x), z; 6)

z
@ Like ordinary maximum likelihood estimation problem, but using predicted values of z.

@ The M-step may not have a closed form solution, in which case, it may be required to
resort to approximation techniques.



Special Case: Revisiting M-step for GMM (Tutorial 10)
$-pie (oo ),9>¢<X@>
Iu(t+1) =1
I Z Pr (t+1) (

) o) m) ()

i Pr(t-i—l) (
t+1) ZP’)(H—l <

m
-,

Z(z:+1) =1

i =




EM for GMM: Summary

Q |Initialize MEO) to different random values and Z‘,(O) to I Let t=0.

10) (x@> ,0) using ,u,gt) and E,(-t)

o (XU)) ,0) and El(-tH) using

@ Compute PAtHD) <z,-

(t+1)

i

© Compute 7 ;

pAtHL) (z,- o (x(f)> ,9> and /L,(H—l)

@ If parameters have changed significantly, increment t by 1 and go back to Step 2.

and u(tﬂ) using PAtHD) <z,-




K-Means Clustering Algorithm or Hard EM

(0)

O |Initialize ;' to different random values. Let t = 0.

@ Posterior Pr(z; | ¢ (XU)) ,0) € [0,1] replaced by P;j € {0,1}. Compute cluster
memberships P;; that minimize the sum of squared distance of points to existing centroids

© Compute ,u,(tH) that minimize the sum of squared distance of points to the centroid of
the cluster assigned in the previous iteration

@ If parameters have changed, increment t by 1 and go back to Step 2.



K-Means Clustering Algorithm or Hard EM

Different cluster analysis results on "mouse” data set:

Criginal Data

o
Wl OF O3 04 0% 06 OT 08 09 1

k-Means Clustering

EM Clustering

g _'l_..'l
E

Figure: Comparison of K-Means with EM (Mixture of Gaussians). Source: Wikipedia
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K-Means Clustering Algorithm or Hard EM

Q Initialize M(O) to different random values. Let t = 0.

i

m K
o Pr(t—i-l) c arngi)nZZ Pl,j||¢ (X(J)> - ,U/Et)Hz

=1 =1

(t£1) — 1 and PIEY =

Solution: For each j € [1..n], i* = argmlin ) (x(j)> - ,ust)||2, Pri ¥
for I # i*.

D November 7, 2016
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K-Means Clustering Algorithm or Hard EM

(0)

O Initialize y1; * to different random values. Let t = 0.
m K
Q Pt ¢ argmin Z Z Pyjl|é (x(f)> - ,ugt)Hz
=1 I=1
Solution: For each j € [1..n], i* = argmlin ) <x(j)> t)||2 Prffﬂ) =1 and PS;.H) =0
for I # i*.
Q@ ) = argmmzz P lo () = l?
j=1 I=1
1 Z':l Pgt'H)Sb (X(j)>
Solution: ,u(H) )
S Py

Q If any parameter P;; has changed, increment t by 1 and go back to Step 2.



K-Means Clustering Algorithm or Hard EM (Tutorial 10)

@ Claim: The K-Means Clustering algorithm will converge in a finite number of iterations
@ Proof Sketch: At each iteration, the K-Means algorithm reduces the objective
POy E,’;l Pyl ¢ (x(f)) — wi||? and stops when this objective does not reduce any further.

m K
ir7. p(tF1) : ) WY _ @2
@ Hintl: P argm;n;/z;ﬂj”(b (x ) w |

m K
Q Hint2: (1) = argmin PEFD g (x(j)> — w)?
@ Hint3: Only a finite number of combinations of P;; are possible.



Disadvantages of K-means & Alternatives

@ Fixed value of K: Right value of K critical to success
@ Sometimes problem owing to the wrong initialization of y;'s
© Mean in “no-man’s land”: Lack of robustness to outliers

Variants of K-means!©

@ K-mediods: Assumption is Cluster’s centroid coincides with one of the points. That is,
wi=ao (x(f)> for some value of j.
= Each step of the K-mediod algorithm is K(n — 1)n ~ O(Kn?)

@ K-modes: For discrete valued attributes:

x[,u,-]q = argmax Z 5(g{>q (X(j)) ,v) Vg=1...m

ve{l,...Vq} xWeC;

For more details read Chapter 7 of Jiawei Han's book



Hierarchical Clustering

T(_:Q —_downl Bottom-up/
divisive agglomerative
{a}
N T, S T 1
{f.g.h}

© 2007 Cios/ Pedrycz/ Swiniarski/ Kurgan 22

Figure: Bottom-up and Top-down Hierarchical Clustering
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Hierarchical Clustering: Two Choices

@ Bottom-up (agglomerative)
@ Top-down (divisive)

Main idea: lteratively merge clusters that are closest (or break clusters that are furthest
apart): NEED A NOTION OF DISTANCE BETWEEN POINTS



Distance Measures

Denoted by dj; (or sj; respectively): is distance between any two datapoints i and j.

@ Mahalanobis Distance (discussed for Gaussian):
|o(x) — pl|3 = (6(xD) = p(xD) TE "1 (p(x)) — p(xY))). EM algorithm has this in
some sense.

@ If ¢(x) are numeric / ordinal (optionally normalized to ||¢(x;) — ¢ (x(f)> llp =1):

m

l6Glp = (Z (¢I(Xi) — (x(f)> )p> /e

=1

@® p = 1: Manhattan distance
@ p = 2: Euclidean distance
@ p > 2: Minkowski distance



Distance Measures (binary features)

O If ¢(x) are binary, measures based on contingency matrix defined over any two features ¢;

and ¢j.

if p+ g+ r+ s= n, some symmetric and asymmetric measures
Q d;= %r . symmetric
0 dj= Z—Jr;: symmetric (odd’s ratio)
© dj=1—(p/n): asymmetric
O dj=1—(s/n): asymmetric
@ dj=1—(-2-): asymmetric

ptq+r

(Jaccard distance: refer: http://en.wikipedia.org/wiki/Jaccard_index )
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Distance Measures (non-binary categorical features)

Q If ¢(x) are discrete then :
> dj=1- M : Symmetric measure
» Expand ¢ to multiple binary features ¢y ... ¢y, if the original ¢, takes k values. Now we can

have the various symmetric and asymmetric measures defined for binary features above.

@ If ¢(x) is a combination of numeric/ordinal and discrete

tOt_d,y = wy * dg{iscrete_|_ Wo % dz_um/ord/nal stow 4wy =1, w,wye [0’ 1]



Hierarchical Clustering

Top-down/ Bottom-up /
divisive agglomerative
{ay
EE NN EEEEEEENEEEEEEREEEEEEEEEER {b'c’d’c}
{Lg.h}

© 2007 Cios / Pedrycz/ Swiniarski/ Kurgan 22

_ _ i i Clustering
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Bottom-up Hierarchical Clustering

@ |Initially every point is a cluster of its own

@ Iteratively merge closes clusters (single-link, complete-link, average distance): Merge
clusters that have the least mutual distance. For top-down: Which clusters to break.

© When to stop merging clusters (closely linked to the distance measure). Stop when the
distance between two clusters is > 6 (some threshold). For top-down: When to stop
splitting the clusters.

ISSUES:
@ Can't undo clustering decision.
@ Lack of flexibility in choice of clustering algorithm
© Do not scale well.
ADVANTAGE: Easy to visualize. So a choosen k from hierarchical clustering can be used in

k-means or any other clustering algorithm run from scratch.
Some of the algoritms studied here were Birch clustering and Chameleon.



Extra Slides:
Derivation of MLE and MAP for GDA,
Another Generative Distribution with MLE and MAP: Multinomial

Distribution, Multinomial Naive Bayes,
Frameworks for Multilabel Classification



Multinomial distribution

@ Multinomial distribution is similar to the binomial distribution but for a variable that
could assume one of t possible values Vq, Vo ... V;

@ Eg: In the case of the toss of dice, t =6
o Pr(X=Vj)) =
@ Given n iid observations of a multinomial random variables, with m; being the number of

times X = V; was observed, the likelihood will be:



Multinomial distribution

@ Multinomial distribution is similar to the binomial distribution but for a variable that
could assume one of t possible values Vq, Vo ... V;

@ Eg: In the case of the toss of dice, t =6
o Pr(X=Vj)) =
@ Given n iid observations of a multinomial random variables, with m; being the number of

times X = V; was observed, the likelihood will be:

n!

Y L S
'”nt!ﬂl Pt (5)

L(m,...,ngp,. ., ) = !



Finding the conjugate prior

Question: What will be conjugate priors for y;'s, the parameters of Multinomial?



Dirichlet Prior for Multinomial

t
P(ul,...ut|a1,...at) o Hu'f" !
i=1
e Normalizing (to make the prior a density function):



Dirichlet Prior for Multinomial

t
P(#l?"'“t|a17-'-at) OCHN?i_l (6)
i=1

e Normalizing (to make the prior a density function):

/ / P(;Ll,...,u,,|oz1,...at):1
M1 Mt

T t_ a t .
P(:u’la"‘,ut|0417...at):MHMII 1 (7)

[[T(e) =
I=1

which, is Dir(a; ... ay) - the Dirichlet Distribution.
Recall T'(n) = (n—1)! when ne N

@ ... a generalization of Beta distribution, just as multinomial is generalization of Bernoulli
distribution



Dirichlet as Generalization of Beta(«a, [3)

@ Dir(puy, pig, ..., fe 01, ..., 0p) = % is the Dirichlet conjugate prior for
multinomial /categorical distributions

e EDir(al,...,oct) [/’LI] = t

>
=1

@ Dir(1,...,1) is the uniform distribution!

(&7]
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Posterior Probability for Multinomial

P(x1 X 1 5o pit ) P(f01 ...
P (M1, o el X, .Xn) = L Lf(il,ﬁ;),,) b

F(Z H (=143, Xk,) ()

P(ul,...ut]xl,...x,,) = —

[Ir aﬁZXkd -

j=1



Summary for Multinomial

@ For multinomial, the mean at maximum likelihood is given by:

N Zr'llXjJ
127 —

e Conjugate prior follows Dir(a; ... ap)
e Posterior is Dir(...ay+ > Xj...)
o The expectation of p for Dir(aq ... ap) is given by:



Summary for Multinomial

@ For multinomial, the mean at maximum likelihood is given by:

. Z,ll Xj.1
= =L )
e Conjugate prior follows Dir(a; ... ap)
e Posterior is Dir(...ay+ > Xj...)
o The expectation of p for Dir(aq ... ap) is given by:
(65} (65}
Morgerc = | o+ 5o | (10

The expectation of y for Dir(...a;+ 3 1" Xj;...) is given by:



Summary for Multinomial

@ For multinomial, the mean at maximum likelihood is given by:

X X
= =L ©)
e Conjugate prior follows Dir(a; ... ap)
e Posterior is Dir(...ay+ > Xj...)
o The expectation of p for Dir(aq ... ap) is given by:
(65} (65}
Morgerc = | o+ 5o | (10
@ The expectation of p for Dir(...cy+ > Xj...) is given by:
E . a1+ZjX',1 CJZ/-I—ZJ-X'J 11
[ﬂ]Dir(...aH—ZZ:l ) T St n T Sardn (11)




(Multinomial) Naive Bayes

o < xW, C; >: Tuple with example xU) belonging to class C;. Pr(C;) is prior probability of
class C;.

° ¢ (x(j)) yeeesOm (xU)): The feature vector for xU)

o P¢q(x)|C) ~ MU/t(#ii ,ut ,) that is, each feature ¢4 follows multinomial distribution
Bayes
Q[vi.. thrl] R | V?q] <[V VI]: Set of values that could be taken by each of
$1, P2 . .. om respectively

Q [pi b - lud o opd ] [0 p) ]2 Parameters for each of ¢1, ¢ ... dm
respectively for class C;

P(¢1(x) .. H P(¢q(x : Feature are independent given the class



ML for Naive Bayes
ML Estimators: |finmy, f’rML(C;)}. or more simply [/l, FA’r(C,-)}

n m
~

1, Pr(C) = argmax [ [ Pr(c(X)) * [ Prdq(Xi)|c(Xe))
wPr(C) 1 g=1

| C‘ m tq

= argmaxH (Pr(C,-))#C’ * H H (uzi)nj,i
/L,PI’(C) i=1 q=1_/:1

where,
#C; = No. of times ¢(Xx) = C; across all k's in the dataset

nzi = No. of times ¢4(Xk) = Vj and c(Xk) = C; across all the k's

nd; =" 8(dq(Xe), V)6 (c(Xki), C)
k



IC]

= Z 5(c(Xk), G) Pr(Cy)

PRI = 36050,



IC]

= Z 5(c(Xk), G) Pr(Cy)

Pr(g(Xi)lc Za $a(Xi), VI) * 11 )

So, the final log-likelihood objective function is:

|<]

argmax [Z(#C log Pr(C;) + ZZ ;log( ,uJ, ] (12)

wprie) =iz =1 j=1

such that Zld Pr(C) =1, Z 4 MJ, =1 Vaq,i, Pr(C)€0,1] Viand ,uj‘-f,- €[0,1] Vaq,ij



Solving Naive Bayes through KKT Conditions

Intuitively, working out the KKT conditions on the above objective function, we get the
Maximum Likelihood Naive Bayes estimators as follows

q
g T n q
Zj’:l nj”,'
~ C:
Pr., = _#G
> #C;
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Tutorial 10

Can you now do Bayesian Inference for Naive Bayes using the Dirichlet Conjugate Prior for
each ¢q(x)?



Derivation of MAP and Maximum Likelihood Estimates for Multivariate
Gaussian: Recapped from https://www.cse.iitb.ac.in/~cs725/
notes/lecture-slides/lecture-06-unannotated.pdf


https://www.cse.iitb.ac.in/~cs725/notes/lecture-slides/lecture-06-unannotated.pdf
https://www.cse.iitb.ac.in/~cs725/notes/lecture-slides/lecture-06-unannotated.pdf

Likelihood estimates for each class C;

Let D; C D the subset of data points that belong to class C;. Let D; = x{...x],,
1 &

0 LL(Kj.coxhy 11 2) = = In(2m) = Znl|2f] = 5 D (8(x) — ) TE7H (6(<) = ).

j=1
@ Setting V,,LL = 0, and Vy,LL = 0 for each i individually , we get
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Likelihood estimates for each class C;

Let D; C D the subset of data points that belong to class C;. Let D; = x{...x],,

mj

1

0 LL(Kj.coxhy 11 2) = = In(2m) = Znl|2f] = 5 D (8(x) — ) TE7H (6(<) = ).

j=1
@ Setting V,,LL = 0, and Vy,LL = 0 for each i individually , we get

1 ;
Q V,LL= [—5 ;2@(4) - u,-)] 5t=0

mj mj

@ Since 3; is invertible, Z((ﬁ(xj’) — i) =0e, fii = Zq&(xj’)
j=1 =1
. 1 X .
(3] X = ; Z(qs(le) - ﬂl)((b(x-;) - ﬂl)T
=
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Estimates based on all n | = E m; | instances

((Xl }/1) (xm)/n)) = Pr (Xl---xn | )’1---Yn) Pr (}’1'--}/n)
K
H Pr (xl | i, E,-) Pr(C)™ =

o LL ((xl,yl), x,,,y,, Z LL(x xfm | pi, i) + milog Pr(G;)

K m;
- (Z%In(2wzf>+§z<<¢< ) — 1) TS (0] ) +zm,|ogpr

i=1 =1
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K
Estimates based on all n | = E m; | instances
i=1

o LL ((x17y1), cee (men))

K m; K
— [ - Tinarnl) £ 3 (60) — ) TS (6) — ) | + D milog Pr(C)
2 2
i=1

i=1 =1
m;j )
o Like before, setting V,,,LL =0, and Vi, LL = 0: ji; = -5 ) " ¢(x]) and
=1
A R T Nooa
Y= - Z(¢(Xj) — i) (@(x}) — i)’
1 j:1
e Also setting Vp, (¢, LL =0, P/(?,) = ,?"’

ZJ:l nj



Conjugate Prior & MAP for Univariate Gaussian

RECAP:
o P(x) ~ N (1, 0?)
@ The conjugate prior for mean of univariate gaussian distribution in the case that o2 is
known is

P(u) = N (o, 05)
o P(ulx1...xn) = N (pin, 073)

o — 0—2 + L‘-g (1
Hn = na(Q) i o2 Ko I‘IO'% + o2 Hmle

1 1 n
R + —



Conjugate Prior & MAP for Multivariate Gaussian

@ Rearranging terms for 1 ~ N (p0,0%9) and x ~ N (p1, 0?)

1 1 n
02 o2 o2

n 0

Mn n .

— = —5Hmle T 1o
oz o

such that Pr(u|D) ~ N (pin, 042). Here n/o? is due to noise in observation while 1/02 is due to
uncertainity in p

@ Extending to Bayesian setting!! for multivariate case with fixed 3
o(x) ~ N(1, 8), o~ N(po, Xo) = Pr(u|D) = N (pn, X)

I ) M
Sy e = 157 fimie + g

MAP estimates i, and X, obtained by solving above linear system.

11https ://en.wikipedia.org/wiki/Multivariate_normal_distribution#Bayesian_inference


https://en.wikipedia.org/wiki/Multivariate_normal_distribution#Bayesian_inference
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@ Recall assumption: ¢(x) is generated using exactly one N (u;, X))
@ What if this assumption were violated?
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» Supervised Multi-labeled: What if an example ¢(x) is known to belong to multiple classes
(Gaussians)?



Extensions

@ Recall assumption: ¢(x) is generated using exactly one N (u;, X))
@ What if this assumption were violated?

» Supervised Multi-labeled: What if an example ¢(x) is known to belong to multiple classes

(Gaussians)?

P(p(x)|Cq) = N (pig; Xq)
» Unsupervised Mixture (of Gaussians):
K K
Pr(¢p(x)) = > Pr(p(x), C=2z) = Y Pr(C = 2)N (1, )
=1 =1
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Supervised Multi-labeled

Building a K-class discriminant by combining a number of two-class discriminants

@ one-versus-the-rest: In this approach, K—1 classifiers are constructed, each of which
separates the points in a particular class C, from points not in that classes

@ one-versus-one: In this method, (’2() binary discriminant functions are introduced, one for
every possible pair of classes.

Can you think of problems with each of the above?



Multi-labeling and Nil-labeling

Attempting to construct a K class discriminant from a set of two class discriminants can lead
to multi-labeled and nil-labeled regions. Multilabeled regions marked with '7".



Ci

Cz
not Co
Figure: lllustrates multi-labeling and nil-labeling (R3 has no label) in one-versus-rest case
o = E DA
B November 7,2016 61 /64
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OPTIONAL: Unbiased Estimators

o Estimator e(#) is called an unbiased estimator of 6 if E[e(f)] = 6

K K

If €(0), ex(6), ..., ex(f) are unbiased estimators and Z Ai =1 then ZA,-e,-(@) is also
=1 i=1

unbiased estimator

E(i:l) _ ni — 1

Xi=> f],- is a biased estimator.

1

An unbiased estimator for X; is therefore



OPTIONAL: Sufficient statistic

e sis a sufficient statistic for 6 if Pr(D|s, 6) is independent of ¢
< iff Pr(D|0) can be written as Pr(D|6) = g(s,8)h(D).



OPTIONAL: Sufficient statistic

e sis a sufficient statistic for 6 if Pr(D|s, 6) is independent of ¢
< iff Pr(D|0) can be written as Pr(D|6) = g(s,8)h(D).

nj
e For Gaussian, ji; = p. Zcb(x;) is a sufficient statistic for 8 = u; because:
j=1
Pr(D|ui) = g(f1i, i) h(D), where



OPTIONAL: Sufficient statistic

e sis a sufficient statistic for 6 if Pr(D|s, 6) is independent of ¢
< iff Pr(D|0) can be written as Pr(D|6) = g(s,8)h(D).
n

e For Gaussian, fij = — Zcb(x;) is a sufficient statistic for § = p; because:
m

j=1
Pr(D|ui) = g(fii, i) h(D), where

nj

— i _ )Ty —1 i _ ;
Pr(Ol) =[] — exP< (609) =)= (60) u))

m 1
=1 (2m)2|Xi|2 2

g(ﬂmlevﬂi) = exp <__N, E M/ + H IHI >

S 1
h()ah)é"'xln;):W ( 1/22¢ ()%

)
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