
CS725 Midsem

Closed notes, 30 Marks, 2 hours

Tuesday 20th September, 2016

Please answer to the point in the limited space provided for each question. You can do
rough work in a separate sheet of paper provided to you. You can also assume any result
stated or proved in the class (but NOT as part of the tutorials).

Problem 1. Relation between Penalized Ridge Regression (λ) and Constrained
Ridge Regression (θ):

Show that the solution to the Penalized Ridge Regression problem

wPen = argmin
w

||φw − y||22 + λ||w||22

is the same as that to the solution to the Constrained Ridge Regression problem

wCon =argmin
w

||φw − y||22
such that ||w||22 ≤ ξ

for some ξ that is a function of λ.
Hint1: This claim is the converse of the claim made in Tutorial 5, Problem 1. Recall

that converse of A → B is B → A.
Hint2: You can make convexity assumptions and use KKT conditions if required.
(7 Marks)
Solution Sketch:
This is the exact converse of the claim made in Tutorial 5, where we had to prove that the

solution to the Constrained Ridge Regression problem was the same as that to the solution
to Penalized Ridge Regression for some λ that is a function of ξ.

• Consider the Penalized Ridge Regression formulation

min(� Φw − y �2 +λPen � w �2)

setting gradient to 0 we get the solution

∇wPen
(f(w) + λPeng(w)) = 0

Here, f (w) = (Φw − y)T (Φw − y) and, g(w) = �w�2.
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• Solving we get,
wPen = (ΦTΦ + λPenI)−1ΦTy

• Now1 consider the Constrained Ridge Regression formulation in which we limit the
weights of the coefficients by placing an upper bound ξ = ||(ΦTΦ+λPenI)−1ΦTy||22, on
size of the L2 norm of the weight vector, with λ set from the Penalized Ridge Regression
formulation:

argminw(Φw − y)T (Φw − y)

�w�22 ≤ ξ

• As discussed in tutorial 5, the objective function, namely f(w) = (Φw−y)T(Φw−y)
is strictly convex. The constraint function, g(w) = �w�22 − ξ, is also convex.

• To minimize the error function subject to constraint |w| ≤ ξ, we apply KKT conditions
at the point of optimality wCon

∇wCon
(f(w) + λ̂g(w)) = 0

(the first KKT condition). Here, f (w) = (Φw − y)T (Φw − y) and, g(w) = �w�2 − ξ.

• Solving we get,
wCon = (ΦTΦ + λ̂I)−1ΦTy

From the second KKT condition we get,

�wCon�2 ≤ ξ

From the third KKT condition,
λ̂ ≥ 0

From the fourth condition
λ̂�wCon�2 = λ̂ξ

• Values of wCon and λ̂ that satisfy all these equations would yield an optimal solution.
That is, if

�wCon� = �(ΦTΦ)−1ΦTy� ≤ ξ

then λ̂ = 0 is the solution. Else, for some sufficiently large value, λ̂ will be the solution
to

�wCon� = �(ΦTΦ + λ̂I)−1ΦTy� = ξ

• Indeed, the value of λ̂ = λPen is the solution to this above equation since ξ
itself was chosen such that

ξ = ||(ΦTΦ + λPenI)−1ΦTy||22

1The discussion hereafter is exactly similar to the discussion of solution to tutorial 5, problem 1. But we
have no need to discuss the Bound on λ in the regularized least square solution:
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Problem 2. Consider the Lasso problem:

w∗ = argmin
w

�φw − y�2 s.t. �w�1 ≤ η, (1)

where

�w�1 =
� n�

i=1

|wi|
�

(2)

1. Since �w�1 is not differentiable, try reformulating this problem to another equivalent
formulation so as to make functions in the constraint differentiable so that you are able
to derive KKT conditions in the next step.

2. Now derive the Karush Kuhn Tucker conditions at primal variable w∗ and the dual
lagrange variables (which you will introduce). Are these conditions necessary/sufficient
conditions for optimality?

(5 Marks)

Solution:

•
w∗ = argmin

w
�φw − y�2 s.t. �w�1 ≤ η, (3)

where

�w�1 =
� n�

i=1

|wi|
�

(4)

• Since �w�1 is not differentiable, one can express (4) as a set of constraints

n�

i=1

ξi ≤ η, wi ≤ ξi, −wi ≤ ξi

• The resulting problem is a linearly constrained Quadratic optimization problem (LCQP):

w∗ = argmin
w

�φw − y�2 s.t.
n�

i=1

ξi ≤ η, wi ≤ ξi, −wi ≤ ξi (5)

• Lagrangian is

�φw − y�2 + β(
n�

i=1

ξi − η) +
n�

i=1

(θi( wi − ξi) + λi(−wi − ξi))
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• KKT conditions: Setting gradient wrt w to 0:

2(φTφ)w − 2φTy + (θ − λ) = 0

Setting gradient wrt ξi to 0:
β − θi − λi = 0

β(
n�

i=1

ξi − η) = 0

∀ i, θi(wi − ξi) = 0 and λi(−wi − ξi) = 0

• We have also shown the equivalence of Lasso formulations in (4) and (6):

w∗ = argmin
w

�φw − y�2 + λ �w�1 (6)
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Problem 3. Posterior Distribution of w with very imprecise prior:
Let y = wTφ(x) + ε and let dataset D = {(X1, Y1), . . . , (Xi, Yi), . . . , (Xm, Ym)} was pro-

vided. Recall that the posterior distribution for w under a Gaussian prior was Pr (w | D) =
N (w | µm,Σm) where

Σ−1
m = λI + ΦTΦ/σ2

and
µm = (λσ2I + ΦTΦ)−1ΦTy

How would you model a very imprecise Gaussian prior on Pr (w)? Explain what happens to
the parameters of the posterior Pr (w | D) as this precision on the prior Pr (w) tends to 0.
What is the connection between this expression and the data likelihood expression?

(3 Marks)
Solution:
The key is to realize (from discussions in the class) that corresponding to the posterior

distribution Pr (w | D) = N (w | µm,Σm) was the prior Pr (w) = N (w | 0, 1
λ
I). We

discussed how λ (reciprocal of variance) corresponds to precision of the belief of 0 mean for
each of the individual wi’s and therefore actually reflects precision of the prior. As λ → 0,
the prior will tend to have 0 precision or ∞ spread (variance), meaning that the prior is very
imprecise. As λ → 0 Pr (w | D) → N (w | µ0

m,Σ0
m) where

(Σ0
m)−1 = ΦTΦ/σ2

and
µ0
m = (ΦTΦ)−1ΦTy
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Problem 4. Interpreting the Primal and Dual Variables Solution to the Support
Vector Regression Formulation:

Recall the Lagrange Function for the Support Vector Regression Problem:

L(w, α, α∗, µ, µ∗) =
1

2
�w�2 + C

�

i

(ξi + ξ∗i ) +
m�

i=1

αi

�
yi −w�φ(xi) − b− �− ξi

�

+
�m

i=1 α
∗
i

�
b + w�φ(xi) − yi − �− ξ∗i

�
−�m

i=1 µiξi −
�m

i=1 µ
∗
i ξ

∗
i

And the following KKT conditions for this SVR formulation:

w −
m�

i=1

(αiφ(xi) − α∗
iφ(xi)) = 0 i.e., w =

m�

i=1

(αi − α∗
i )φ(xi)

C − αi − µi = 0 i.e., αi + µi = C, α∗
i + µ∗

i = C,
�

i(α
∗
i − αi) = 0

αi(yi − w�φ(xi) − b − � − ξi) = 0 AND µiξi = 0 AND α∗
i (b + w�φ(xi) − yi − � − ξ∗i ) = 0

AND µ∗
i ξ

∗
i = 0

In the optimal weight vector w =
m�

i=1

(αi−α∗
i )φ(xi), determine which types of points will

contribute to w through a non-zero value of (αi −α∗
i ). You can structure your answer along

the following lines.

1. First prove that for any point (xi, yi), the product αiα
∗
i = 0.

(2 Marks)

Solution: By design, we know that if ξi > 0 then ξ∗i = 0 and vice versa.

Let αi > 0 and α∗
i > 0. We will show that this leads to a contradiction. First of all, by

virtue of Complimentary slackness, this would mean yi−w�φ(xi)−b− �−ξi = 0 AND
b + w�φ(xi) − yi − � − ξ∗i = 0. Adding up the two equalities gives us: ξi + ξ∗i = −2�.
Since only one of ξi and ξ∗i can be non-zero, this implies that the non-zero component
is negative, which is a contradiction since ξi, ξ

∗
i ≥ 0. Thus, atleast one of αi and α∗

i

must be 0.

Q: Why is this important for what we are trying to prove?

(2 Marks)

Solution:

The significance of αiα
∗
i = 0 is that without this equality, we could have had αi > 0

and α∗
i > 0 yet canceling out each other’s effects when αi = α∗

i . But with αiα
∗
i = 0,

we can be assured that αi − α∗
i �= 0 when one of the two α’s are non-zero. That is,

αi − α∗
i = max{αi, α

∗
i }

2. What will be the value of α and α∗ for points that lie strictly outside the �-insensitive
tube? Justify your answer.

(2 Marks)

Solution:

If αi = C, then µi = 0 and yi −w�φ(xi)− b− � = ξi ≥ 0. That is, αi = C corresponds
to points lying above (or beyond) the upper �−band. Similarly, α∗

i = C corresponds
to points lying below (or beyond) the lower �−band. Thus, αi = C and α∗

i = C
correspond to points lying either outside or on the �−tube.
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3. What will be the value of α and α∗ for points that lie strictly on the boundary of the
�-insensitive tube? And how about points lying within the �-insensitive tube? Justify
your answer.

(3 Marks)

Solution:

For any point on the upper margin, yi −w�φ(xi) − b − � = 0 and ξi = 0 =⇒ µi ≥ 0
=⇒ αi ∈ [0, C]. That is, αi ∈ [0, C] corresponds to points lying on the �−band above
the regression curve. Similarly, α∗

i ∈ [0, C] corresponds to points lying on the �−band
below the regression curve.

Further, if yi − w�φ(xi) − b − � − ξi < 0, then αi = 0, µi = C and ξi = 0 that is,
yi − w�φ(xi) − b − � < 0 which means that for points within the � band, ξi = 0 and
αi = 0. Similarly, one can argue for b + w�φ(xi) − yi − � < 0 leading to α∗

i = 0. That
is, points lying within the �−tube do not contribute to the weight vector.

Thus the overall implication is that in the weight vector, w = (αi − α∗
i )φ(xi), the

contribution αi − α∗
i is non-zero only for points lying on or within the �−tube.

4. If all training data points lie strictly inside the �-band of the SVR solution, what would
the regression line be?

(3 Marks)

Solution:

If all training data points lie strictly inside the �-band of the SVR, then for all i,
ξi = ξ∗i = 0 and using basic knowledge of SVR, we know that for all such points,
yi−w�φ(xi)−b < �+ξi and b+w�φ(xi)−yi < �+ξ∗i . That is, yi−w�φ(xi)−b−�−ξi < 0
and b + w�φ(xi) − yi − �− ξ∗i < 0.

Since αi(yi −w�φ(xi)− b− �− ξi) = 0 and α∗
i (b + w�φ(xi)− yi − �− ξ∗i ) = 0, we must

have for all i, αi = α∗
i = 0.

⇒ w =
�n

i=1(αi − α∗
i )φ(xi) = 0

Thus, the regression line will simply be f(x) = b, the bias term! In the case of a single
dimensional φ(x), this will mean that f(x) will be a simple horizontal line!
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Problem 5. Valid or Positive Definite Kernels:
We proved in class that the following kernel is valid or positive definite: K(x1,x2) =

(�x1,x2�)d =

�
n�

i=1

x1ix2i

�d

, where (�x1,x2�) =
�n

i=1 x1ix2i is an inner product of vectors

x1,x2 ∈ �n and d ∈ Z+.
If required, assuming the above, prove that

Knew(x1,x2) =

�
n�

i=1

√
x1i

√
x2i

�d

is also a positive definite kernel.
Hint: If needed, you can prove and then use the following more general claim:
If K(x1,x2) is a positive definite kernel and g(x) : �n → �n then Knew(x1,x2) =

K (g(x1), g(x2)) is also a positive definite kernel.
(3 Marks)
Solution:
Since we know that K(x1,x2) is a positive definite kernel, there must exist φ : �n → H

such that K(x1,x2) = (�φ(x1), φ(x2)�)
We are given that g(x) : �n → �n. Consider φg : �n → H such that φg(x) = φ(g(x)).

Then, Knew(x1,x2) = K (g(x1), g(x2)) = (�φg(x1), φg(x2)�). That is, Knew(x1,x2) is a posi-
tive definite kernel.
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