
CS725 Midsem

Closed notes, 30 Marks, 2 hours

Wednesday 7th September, 2016

Please answer to the point in the limited space provided for each question. You can do
rough work in a separate sheet of paper provided to you. You can also assume any result
stated or proved in the class (but NOT as part of the tutorials).

Problem 1. Relation between Penalized Ridge Regression (λ) and Constrained
Ridge Regression (θ):

Show that the solution to the Penalized Ridge Regression problem

wPen = argmin
w

||φw − y||22 + λ||w||22

is the same as that to the solution to the Constrained Ridge Regression problem

wCon =argmin
w

||φw − y||22

such that ||w||22 ≤ ξ

for some ξ that is a function of λ.
Hint1: This claim is the converse of the claim made in Tutorial 5, Problem 1. Recall

that converse of A→ B is B → A.
Hint2: You can make convexity assumptions and use KKT conditions if required.
(7 Marks)
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Problem 2. Consider the Lasso problem:

w∗ = argmin
w

‖φw − y‖2 s.t. ‖w‖1 ≤ η, (1)

where

‖w‖1 =
( n∑

i=1

|wi|
)

(2)

1. Since ‖w‖1 is not differentiable, try reformulating this problem to another equivalent
formulation so as to make functions in the constraint differentiable so that you are able
to derive KKT conditions in the next step.

2. Now derive the Karush Kuhn Tucker conditions at primal variable w∗ and the dual
lagrange variables (which you will introduce). Are these conditions necessary/sufficient
conditions for optimality?

(5 Marks)
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Problem 3. Posterior Distribution of w with very imprecise prior:
Let y = wTφ(x) + ε and let dataset D = {(X1, Y1), . . . , (Xi, Yi), . . . , (Xm, Ym)} was pro-

vided. Recall that the posterior distribution for w under a Gaussian prior was Pr (w | D) =
N (w | µm,Σm) where

Σ−1m = λI + ΦTΦ/σ2

and
µm = (λσ2I + ΦTΦ)−1ΦTy

How would you model a very imprecise Gaussian prior on Pr (w)? Explain what happens to
the parameters of the posterior Pr (w | D) as this precision on the prior Pr (w) tends to 0.
What is the connection between this expression and the data likelihood expression?

(3 Marks)
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Problem 4. Interpreting the Primal and Dual Variables Solution to the Support
Vector Regression Formulation:

Recall the Lagrange Function for the Support Vector Regression Problem:

L(w, α, α∗, µ, µ∗) =
1

2
‖w‖2 + C

∑
i

(ξi + ξ∗i ) +
m∑
i=1

αi

(
yi −w>φ(xi)− b− ε− ξi

)
+
∑m

i=1 α
∗
i

(
b+ w>φ(xi)− yi − ε− ξ∗i

)
−
∑m

i=1 µiξi −
∑m

i=1 µ
∗
i ξ
∗
i

And the following KKT conditions for this SVR formulation:

w −
m∑
i=1

(αiφ(xi)− α∗iφ(xi)) = 0 i.e., w =
m∑
i=1

(αi − α∗i )φ(xi)

C − αi − µi = 0 i.e., αi + µi = C, α∗i + µ∗i = C,
∑

i(α
∗
i − αi) = 0

αi(yi − w>φ(xi) − b − ε − ξi) = 0 AND µiξi = 0 AND α∗i (b + w>φ(xi) − yi − ε − ξ∗i ) = 0
AND µ∗i ξ

∗
i = 0

In the optimal weight vector w =
m∑
i=1

(αi−α∗i )φ(xi), determine which types of points will

contribute to w through a non-zero value of (αi−α∗i ). You can structure your answer along
the following lines.

1. First prove that for any point (xi, yi), the product αiα
∗
i = 0.

(2 Marks)
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Why is this important for what we are trying to prove?

(2 Marks)

2. What will be the value of α and α∗ for points that lie strictly outside the ε-insensitive
tube? Justify your answer.

(2 Marks)
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3. What will be the value of α and α∗ for points that lie strictly on the boundary of the
ε-insensitive tube? And how about points lying within the ε-insensitive tube? Justify
your answer.

(3 Marks)
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4. If all training data points lie strictly inside the ε-band of the SVR solution, what would
the regression line be?

(3 Marks)
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Problem 5. Valid or Positive Definite Kernels:
We proved in class that the following kernel is valid or positive definite: K(x1,x2) =

(〈x1,x2〉)d =

(
n∑

i=1

x1ix2i

)d

, where (〈x1,x2〉) =
∑n

i=1 x1ix2i is an inner product of vectors

x1,x2 ∈ <n and d ∈ Z+.
If required, assuming the above, prove that

Knew(x1,x2) =

(
n∑

i=1

√
x1i
√
x2i

)d

is also a positive definite kernel.
Hint: If needed, you can prove and then use the following more general claim:
If K(x1,x2) is a positive definite kernel and g(x) : <n → <n then Knew(x1,x2) =

K (g(x1), g(x2)) is also a positive definite kernel.
(3 Marks)
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