Quiz 1

15 Marks, 45 minutes

Thursday 25 th August, 2016

Please answer to the point in the limited space provided for each question. You can do rough work in a separate sheet of paper provided to you. You can also assume any result stated or proved in the class (but NOT as part of the tutorials).

Problem 1. Let $\mathcal{D}=\left\langle\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)\right\rangle$ such that each $y_{j} \in \Re$. Let $\phi(\mathbf{x})=\left[\phi_{1}(\mathbf{x}), \ldots, \phi_{n}(\mathbf{x})\right]$ be a vector of basis functions. Consider the linear regression function $f(\mathbf{x})=\phi^{T}(\mathbf{x}) \mathbf{w}$ with \mathbf{w} obtained either as a least squares or ridge regression estimate. Show that, using either of these estimates for \mathbf{w}, the regression function can be written in the (so-called kernelized) form $f(\mathbf{x})=\sum_{i=1}^{m} \alpha_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right) y_{i}$ where $K\left(\mathbf{x}, \mathbf{x}_{i}\right)=\phi^{T}(\mathbf{x}) \phi\left(\mathbf{x}_{i}\right)$ is a function of \mathbf{x} and \mathbf{x}_{i} only and independent of any of the \mathbf{y}_{i} 's and \mathbf{x}_{j} for all $j \neq i$. Each α_{i} can be a function of the entire dataset \mathcal{D}.

Hint: Use the following Matrix Identity that holds for any matrices P, B and R with compatible dimensions such that R and $B P B^{T}+R$ are invertible:

$$
\left(P^{-1}+B^{T} R^{-1} B\right)^{-1} B^{T} R^{-1}=P B^{T}\left(B P B^{T}+R\right)^{-1}
$$

(8 Marks)
Answer: The solution to linear (set $\lambda=0$) and ridge regression can be written as $\mathbf{w}=\left(\Phi^{T} \Phi+\lambda I\right)^{-1} \Phi^{T} \mathbf{y}$ where

- Recall for Ridge Regression: $\mathbf{w}=\left(\Phi^{T} \Phi+\lambda I\right)^{-1} \Phi^{T} y$, where,

$$
\begin{gathered}
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
\ldots \\
y_{m}
\end{array}\right] \\
\Phi=\left[\begin{array}{ccc}
\phi_{1}\left(\mathbf{x}_{1}\right) & \ldots & \phi_{p}\left(\mathbf{x}_{1}\right) \\
\ldots & \ldots & \ldots \\
\phi_{1}\left(\mathbf{x}_{m}\right) & \ldots & \phi_{p}\left(\mathbf{x}_{m}\right)
\end{array}\right]
\end{gathered}
$$

- Please note the difference between Φ and $\phi(\mathrm{x})$

$$
\phi\left(\mathbf{x}_{j}\right)=\left[\begin{array}{c}
\phi_{1}\left(\mathbf{x}_{j}\right) \\
\ldots \\
\phi_{p}\left(\mathbf{x}_{j}\right)
\end{array}\right]
$$

Then, the regression function will be

$$
f(\mathbf{x})=\phi^{T}(\mathbf{x}) \mathbf{w}=\phi^{T}(\mathbf{x})\left(\Phi^{T} \Phi+\lambda I\right)^{-1} \Phi^{T} \mathbf{y}
$$

- $\phi^{T}\left(\mathbf{x}_{i}\right) \phi\left(\mathbf{x}_{j}\right)=K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$
- $\left(\Phi^{T} \Phi\right)_{i j}=\sum_{k=1}^{m} \phi_{i}\left(\mathbf{x}_{k}\right) \phi_{j}\left(\mathbf{x}_{k}\right)$
- $\left(\Phi \Phi^{T}\right)_{i j}=\sum_{k=1}^{p} \phi_{k}\left(\mathbf{x}_{i}\right) \phi_{k}\left(\mathbf{x}_{j}\right)=\phi^{T}\left(x_{i}\right) \phi\left(x_{j}\right)=K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$

Kernelizing Ridge Regression

- Given $\mathbf{w}=\left(\Phi^{T} \Phi+\lambda I\right)^{-1} \Phi^{T} \mathbf{y}$ and using the identity $\left(P^{-1}+B^{T} R^{-1} B\right)^{-1} B^{T} R^{-1}=$ $P B^{T}\left(B P B^{T}+R\right)^{-1}$
$-\Rightarrow$ by setting $R=I, P=\frac{1}{\lambda} I$ and $B=\Phi$,
$-\Rightarrow \mathbf{w}=\Phi^{T}\left(\Phi \Phi^{T}+\lambda I\right)^{-1} \mathbf{y}=\sum_{i=1}^{m} \alpha_{i} \phi\left(\mathbf{x}_{i}\right)$ where $\alpha_{i}=\left(\left(\Phi \Phi^{T}+\lambda I\right)^{-1} \mathbf{y}\right)_{i}$
$-\Rightarrow$ the final decision function $f(\mathbf{x})=\phi^{T}(\mathbf{x}) \mathbf{w}=\sum_{i=1}^{m} \alpha_{i} \phi^{T}(\mathbf{x}) \phi\left(\mathbf{x}_{i}\right)$

The Kernel function in Ridge Regression

- We call $\phi^{\top}\left(x_{1}\right) \phi\left(x_{2}\right)$ a kernel function:
$K\left(x_{1}, x_{2}\right)=\phi^{\top}\left(x_{1}\right) \phi\left(x_{2}\right)$
- The preceding expression for decision function becomes $f(\mathbf{x})=\sum_{i=1}^{m} \alpha_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)$ where $\alpha_{i}=\left(\left(\left[K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right]+\lambda I\right)^{-1} \mathbf{y}\right)_{i}$

Problem 2. Case for non-IID dataset:

In the class, we discussed the case of Bayesian estimation for a univariate Gaussian from dataset \mathcal{D} that consisted of IID (independent and identically distributed) observations.

Let $\operatorname{Pr}(X) \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ and let σ^{2} be known. Suppose, the examples $x_{1} \ldots x_{m}$ in the dataset \mathcal{D} were not necessarily independent and whose possible dependence was expressed by known covariance matrix Ω but with a common unknown (to be estimated) mean $\mu \in \Re$. Let $\mathbf{u}=[1,1, \ldots 1]$ a m-dimensional vector of 1's and $\mathbf{x}=\left[x_{1} \ldots x_{m}\right]$ and

$$
\operatorname{Pr}\left(x_{1} \ldots x_{m} ; \mu, \Omega\right)=\frac{1}{(2 \pi)^{\frac{m}{2}}|\Omega|^{\frac{1}{2}}} e^{-\frac{1}{2}(\mathbf{x}-\mu \mathbf{u})^{T} \Omega^{-1}(\mathbf{x}-\mu \mathbf{u})}
$$

Assume that $\Omega \in \Re^{m \times m}$ is positive-definite. Now answer the following questions

1. How would you go about doing Bayesian estimation for μ ? What will be an appropriate conjugate prior? What will the posterior be? And what will be the MAP and Bayes estimates?
2. Is the case of IID data set \mathcal{D} a special case of this problem? Prove your claim.
(7 Marks)

Answer:

This problem is directly adapted from Tutorial 2 .
Answers to 1: As hinted in the class, we will expect the conjugate prior of mean μ of the (product of) Gaussian to be Gaussian. Let $\mu \sim \mathcal{N}\left(\mu_{0}, \sigma_{0}^{2}\right)$ with a fixed and known σ_{0}^{2}.

$$
\begin{aligned}
& \mathcal{N}\left(\mu_{m}, \sigma_{m}^{2}\right)=\exp \left(\frac{-1}{2 \sigma_{m}^{2}}\left(\mu-\mu_{m}\right)^{2}\right)=\operatorname{Pr}(\mu \mid \mathcal{D}) \propto \operatorname{Pr}(\mathcal{D} \mid \mu) \operatorname{Pr}(\mu)= \\
& \frac{1}{(2 \pi)^{\frac{m}{2}}|\Omega|^{\frac{1}{2}}} \frac{1}{\sqrt{2 \pi \sigma_{0}^{2}}} \exp \left(-\frac{1}{2}(\mathbf{x}-\mu \mathbf{u})^{T} \Omega^{-1}(\mathbf{x}-\mu \mathbf{u})-\frac{\left(\mu-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}\right) \propto \exp \left(-\frac{1}{2}(\mathbf{x}-\mu \mathbf{u})^{T} \Omega^{-1}(\mathbf{x}-\mu \mathbf{u})-\right.
\end{aligned}
$$

Our reference equality is:

$$
\exp \left(-\frac{1}{2}\left(\mathbf{x}^{T} \Omega^{-1} \mathbf{x}-2 \mu \mathbf{x}^{T} \Omega^{-1} \mathbf{u}+\mu^{2} \mathbf{u}^{T} \Omega^{-1} \mathbf{u}\right)-\frac{\left(\mu-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}\right)=\exp \left(\frac{-1}{2 \sigma_{m}^{2}}\left(\mu-\mu_{m}\right)^{2}\right)
$$

Matching coefficients of μ^{2}, we get

$$
\frac{-\mu^{2}}{2 \sigma_{m}^{2}}=\frac{-1}{2} \mu^{2} \mathbf{u}^{T} \Omega^{-1} \mathbf{u}+\frac{-\mu^{2}}{2 \sigma_{0}^{2}} \Rightarrow \frac{1}{\sigma_{m}^{2}}=\frac{1}{\sigma_{0}^{2}}+\mathbf{u}^{T} \Omega^{-1} \mathbf{u}
$$

Matching coefficients of μ, we get

$$
\frac{2 \mu \mu_{m}}{2 \sigma_{m}^{2}}=\mu\left(\mathbf{x}^{T} \Omega^{-1} \mathbf{u}+\frac{2 \mu_{0}}{2 \sigma_{0}^{2}}\right) \Rightarrow \mu_{m}=\sigma_{m}^{2}\left(\mathbf{x}^{T} \Omega^{-1} \mathbf{u}+\frac{\mu_{0}}{\sigma_{0}^{2}}\right) \Rightarrow \frac{1}{1+\sigma_{0}^{2} \mathbf{u}^{T} \Omega^{-1} \mathbf{u}}\left(\sigma_{0}^{2} \mathbf{x}^{T} \Omega^{-1} \mathbf{u}+\mu_{0}\right)
$$

μ_{m} will be the MAP estimate of μ.
One can easily verify that setting $\Omega=I$ gives the IID case. In fact, one can also verify that the with $\Omega=I$, one gets the same Bayesian estimates as in the IID case discussed in the class.

