
Quiz-2

Sunday 23rd October, 2016

(15 Marks). Please answer to the point in the limited space provided for each question.
You can do rough work in a separate sheet of paper.

Problem 1. Logistic Regression and Maximum Entropy Classifier
The Logistic Regression classifier also goes under another name called the Maximum

Entropy Classifier where the goal is to prefer the most uniform models that also satisfy any
given constraints. More specifically, the goal in Maximum Entropy Classification is to find
the probability distribution Pr

(
Y = c|ϕ (x)

)
for c = [1...K] that maximizes the entropy

E
(
Pr(.))

)
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∣∣∣∣ϕ(x(i)
))

log Pr
(
Y = c

∣∣∣∣ϕ(x(i)
)) (1)

such that, for every feature ϕj for j = [1...n] and every class c = [1..K]

m∑
i=1

ϕj

(
x(i)
)

Pr
(
Y = c

∣∣∣∣ϕ(x(i)

))
=

m∑
i=1

ϕj

(
x(i)
)
δ(y(i), c) (2)

where δ(y(i), c) = 1 if and only if y(i) = c and δ(y(i), c) = 0 otherwise.
Now answer the following questions

1. Interpret the optimization problem (1) and the constraint (2) in plain English words
while clearly stating the intuition.

2. Prove that the probability distribution Pr
(
Y = c|ϕ (x)

)
of the solution that maximizes

the entropy in (1) subject to the constraint set (2) turns out to have the form of logistic
regression1.

3. How can one introduce regularization into the entropy objective (1)? What will be the
result of doing so on the form of the resulting probability distribution Pr

(
Y = c|ϕ (x)

)
at optimality? (10 Marks)

1Optional point of reference: Recall Solution to Problem 3 of Tutorial 7, where we restated the problem
of finding optimal solution w to the regularized cross entropy as that of finding a function from a function
space that is smooth enough and minimizes the objective. In this problem, we are similarly seeking a
characterization of family of probability distributions that maximize the entropy.
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Solution:

1. The main idea behind maximum entropy is that one should prefer the most uniform
models that also satisfy the data driven constraints which are captured in (2). For
example, consider a four-way text classification task where we are told only that on an
average 60% of documents with the word “advisor” in them are in the student class.
Thus, given a document with “advisor” in it, we would say it has a 60% chance of
being a student document, and a 40% chance for each of the other three classes. If a
document does not have“advisor” we would guess the uniform class distribution, that
is, 25% each as per (1). This is exactly the maximum entropy model (1) that conforms
to our known constraint (2)

2. The key is to understand that the optimization problem in (1) is for the set of variables

pci where pci = Pr
(
Y = c|ϕ

(
x(i)
))

. Simplfying (1) and (2) in terms of these variables

E
(
Pr(.))

)
= −

 1

m

K∑
c=1

m∑
i=1

pci log pci

 (3)

such that, for every feature ϕj for j = [1...n] and every class c = [1..K]

m∑
i=1

ϕj

(
x(i)
)
pci =

m∑
i=1

ϕj

(
x(i)
)
δ(y(i), c) (4)

and for each i = [1..m]
K∑
c=1

pci = 1 (5)

Let wcj be the lagrange multiplier corresponding to (4) for a specific value of c and
j and λ be the lagrange multiplier corresponding to (5). We know that a necessary
condition for optimality of (3) subject to (4) and (5) is that the gradient (or every
partial derivative) of the Langrange with respect to all the pci should be 0. That is,

− log pci − 1 +
m∑
j=1

wcjϕj

(
x(i)
)
+ λ = 0

that is,

log pci = λ− 1 +
m∑
j=1

wcjϕj

(
x(i)
)

That is,

pci = exp

λ− 1 +
m∑
j=1

wcjϕj

(
x(i)
) = exp (λ− 1)× exp

 m∑
j=1

wcjϕj

(
x(i)
)
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Now from (5),

K∑
k=1
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Therefore
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Thus,
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. Thus
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which is exactly of the form of Logistic regression!

3. Any one of the two options could serve the purpose.

• Note that maximum entropy without any constraints results when the distribution
is uniform. Thus, maximizing entropy is the same as minimizing the (probabilis-
tic) distance of the target desired distribution from a uniform prior. One could
therefore introduce regularization into the entropy maximization in (1) by chang-
ing the objective from maximizing entropy (that is minimizing the distance of the
target distribution from the uniform distribution) to minimizing the distance
of the target distribution from some prior distribution (such as Gaussian),
subject to the constrains in (2). Specifically, such one such distance is called the
KL divergence.

• One could introduce regularization into the entropy maximization via the con-
straints (2) by adding a small factor η to each constraint on the right hand side.
This amounts to the assumption that by default certain additional number of ob-
servations η for each feature need to be accounted for, even if the number of such
observations in the data are fewer. This allows for sparse features to be accounted
for.
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Problem 2. Answer the following questions on neural networks:

1. Can you think of a smaller and more compact network for XOR than was discussed in
class? What is the smallest possible network?
Solution: You will need atleast two perceptrons in the neural network, since XOR
is not linearly seperable. It turns out that you can indeed construct a XOR with 2
perceptrons as follows

2. Now how about designing an N-way XOR using neural networks? Recall that an
N−way XOR outputs a 1 if an only if an odd number of inputs have 1.
Solution: We can recursively partition each problem into two subproblems with half
the size as follows:
XOR(x1...xn) = XOR(XOR(x1...xn/2), XOR(xn/2+1, xn)

Assuming that XOR(a, b) can be represented using two perceptrons, it will require
logN such units (that is 2 logN perceptrons) to represent XOR(x1...xN)

(5 Marks)
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