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Overview of Linear Algebra



Solving Linear Equation: Geometric View

Simple example of two equations and two unknowns x and y
to be found: 2x − y = 0 and −x + 2y = 3, and in general,
Ax = b

One view: Each equation is a straight line in the xy plane,
and we seek the point of intersection of the two lines ( Fig. 2)

Challenging in Higher Dimensions!



Three Different Views

Linear algebra, shows us three different ways of view solutions
if they exist):

1 A direct solution to Ax = b, using techniques called
elimination and back substitution.

2 A solution by “inverting” the matrix A, to give the solution
x = A−1b.

3 A vector space solution, by looking at notions called the
column space and nullspace of A.



Vectors and Matrices

A pair of numbers represented by a two-dimensional column vector :

u =

�
2

−1

�

Vector operations: scalar multiplication and vector addition:
If v = (−1, 2), then what is u+ v?
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Vectors and Matrices (contd)

Can be visualised as the diagonal of the parallelogram formed
by u and v

Any point on the plane containing the vectors u and v is some
linear combination au+ bv,

Space of all linear combinations is simply the full
two-dimensional plane (�2) containing u and v

Similarly, vectors generated by linear combinations of 2 points
in a three-dimensional space form some “subspace” of the
vector space �3

The space of linear combinations au+ bv + cw could fill the
entire three-dimensional space.



Solving Linear Systems: Linear Algebra View

Recap the two equations:

2x − y = 0

−x + 2y = 3

And now see their“vector” form:

x

�
2

−1

�
+ y

�
−1

2

�
=

�
0

3

�
(1)

Solutions as linear combinations of vectors: That is, is there
some linear combination of the column vectors [2,−1] and [−1, 2]
that gives the column vector [0, 3]?



Solving Linear Systems: Linear Algebra View

A =

�
2 −1

−1 2

�

is a 2× 2 (Coefficient) Matrix’ - a rectangular array of numbers.
Further, if

x =

�
x

y

�
and b =

�
0

3

�

Then, the matrix equation representing the same linear
combination is:

Ax = b (2)



A 3× 3 Case

2x − y = 0

−x + 2y − z = −1

−3y + 4z = 4

A =




2 −1 0

−1 2 −1

0 −3 4




b =




0

−1

4




Find values of x, y and z such that:

x(column 1 of A) + y(column 2 of A) + z(column 3 of A) =




0

−1

4




It is easy to see now that the solution we are after is the solution to the matrix equation Ax = b:

x =




0

0

1






What about insolvable systems?

It may be the case that for some values of A and b, no values of
x , y and z would solve Ax = b:

A =




1 0 1

0 1 1

0 0 0


 b =




0

0

1






Solution of Linear Equations by (Gauss) Elimination

2x − y = 0

−x + 2y = 3

Progressively eliminate variables from equations: First multiply
both sides of the second equation by 2 (leaving it unchanged):

−2x + 4y = 6

Adding LHS of the first equation to the LHS of this new equation,
and RHS of the first equation to the RHS of this new equation
(does not alter anything):

(−2x + 4y) + (2x − y) = 6 + 0 or 3y = 6



You can see that x has been “eliminated” from the second
equation and the set of equations have been said to be
transformed into an upper triangular form.

2x − y = 0

3y = 6

⇒ y = 6/3 = 2. And substituting back y into the first equation,
2x − 2 = 0 or x = 1.



Row Elimination: More illustration

x + 2y + z = 2

3x + 8y + z = 12

4y + z = 2

Coefficient matrix:

A =




1 2 1

3 8 1

0 4 1




The (2,1) step: First eliminate x from the second equation
⇒ multiply the first equation by a multiplier (a21/a11 ) and
subtract it from the second equation.

a11 is called the pivot: Goal is to eliminate x coefficient in the
second equation.



RHS, after the first elimination step, is:

b1 =




2

6

2






Row Elimination: More illustration

A1 =




1 2 1

0 2 −2

0 4 1




The (3,1) step for eliminating a31: Nothing to do, so
A2 = A1

The (3,2) step for eliminating a32: a22 is the next pivot...

A3 =




1 2 1

0 2 −2

0 0 5




A3 is called an upper triangular matrix



Sequence of operations on Ax to get A3x ⇒ multiplying
by a sequence of “elimination matrices”

Eg: A1 and b1 can be obtained by pre-multiplying A and b
respectively by the matrix E21:

E21 =




1 0 0

−3 1 0

0 0 1




This also holds for E32 and so on. Make sure and verify that
you understand Matrix multiplication!

Multiplying matrices A and B is only meaningful if the
number of columns of A is the same as the number of rows of
B . That is, if A is an m× n matrix, and B is an n× k matrix,
then AB is an m × k matrix.



More on Matrix Multiplication

Matrix multiplication is “associative”; that is,
(AB)C = A(BC )

But, unlike ordinary numbers, matrix multiplication is not
“commutative”. That is AB �= BA

Associativity of matrix multiplication allows us to build up a
sequence of matrix operations representing elimination.

E31 =




1 0 0

0 1 0

0 0 1


 E32 =




1 0 0

0 1 0

0 −2 1




General rule: If we are looking at n equations in m unknowns,
and an elimination step involves multiplying equation j by a
number q and subtracting it from equation i , then the
elimination matrix Eij is simply the n ×m “identity matrix” I ,
with aij = 0 in I replaced by −q.



Elimination as Matrix Multiplication

For example, with 3 equations in 3 unknowns, and an
elimination step that “multiplies equation 2 by 2 and
subtracts from equation 3”:

I =




1 0 0

0 1 0

0 0 1


 E32 =




1 0 0

0 1 0

0 −2 1




The three elimination steps give:

E32E31E21(Ax) = E32E31E21b

which, using associativity is:

Ux = (E32E31E21)b = c (3)

with U be the obvious upper triangular matrix



Elimination as Matrix Multiplication

U =




1 2 1

0 2 −2

0 0 5


 c =




2

6

−10


 (4)

Just as a single elimination step can be expressed as
multiplication by an elimination matrix, exchange of a pair of
equations can be expressed by multiplication by a permutation
matrix. Consider..

4y + z = 2

x + 2y + z = 2

3x + 8y + z = 12

The coefficient matrix A can benefit from permutation! Why?



Elimination as Matrix Multiplication

No solution exists, if, in spite of all exchanges, elimination
results in a 0 in any one of the pivot positions

Else, we will reach a point where the original equation Ax = b
is transformed into Ux = c

Final step is back-substitution, in which variables are
progressively assigned values using the right-hand side of this
transformed equation

Eg: z = −2, back-substituted to give y = 1, which finally
yields x = 2.



Matrix Inversion for Solving Linear Equations

Given Ax = b, we find x = A−1b, where A−1 is called the
inverse of the matrix.

A−1 is such that AA−1 = I where I is the identity matrix.

Since matrix multiplication does not necessarily commute: If
for an m × n matrix A, there exists a matrix A−1

L such that
A−1
L A = I , (n × n), then A−1

L is called the left inverse of A.

Similarly, if there exists a matrix A−1
R such that AA−1

R = I
(m ×m), then A−1

R is called the right inverse of A.

For square matrices, the left and right inverses are the same:

A−1
L (AA−1

R ) = (AA−1
L )A−1

R

For square matrices, we can simply talk about “the inverse”
A−1.

Do all square matrices have an inverse?



Not Every Square Matrix has an Inverse

Here is a matrix that is not invertible:

A =

�
1 3

2 6

�
(5)

If A−1 exists, the solution will be x = A−1b and elimination
must also produce an upper triangular matrix with non-zero
pivots.
Thus, the condition works both ways: if elimination
produces non-zero pivots then the inverse exists and
otherwise, the matrix is not invertible or singular (verify
for (5))
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produces non-zero pivots then the inverse exists and
otherwise, the matrix is not invertible or singular (verify
for (5))
⇔ Matrix will be singular iff its rows or columns are
linearly dependent (rank < n)
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Vector Spaces

If a set of vectors V is to qualify as a “vector space” it should
be “closed” under the operations of addition and scalar
multiplication.

Thus, given vectors u and v in a vector space, all scalar
multiples of vectors au and bv are in the space, as is their
linear combination au+ bv.

If a subset (VS) of any such space is itself a vector space
(that is, (VS) is also closed under linear combination) then
(VS) is called a subspace of (V ).

Eg: Set of vectors �2, M consisting of all 2× 2 matrices

Set (�2)+ (2-D vectors in the positive quadrant is not a
vector space.



Column Space and Solution to Linear System

Column space of A, or C (A): All possible linear combinations
of the columns of A, that produce in effect, all possible b’s

Is there a solution to Ax = b ⇔ b ∈ C (A):

In the example below, is C (A) the entire 4−dimensional space
�4? If not, how much smaller is C (A) compared to �4?

A =




1 1 2

2 1 3

3 1 4

4 1 5




Equivalently, with Ax = b, for which right hand sides b does a
solution x always exist?

Definitely does not exist for every right hand side b, (4
equations in 3 unknowns)



More on Column Space

Which right hand side b allows the equation to be solved

Ax =




1 1 2

2 1 3

3 1 4

4 1 5







x1

x2

x3


 =




b1

b2

b3


 (6)

Eg: If b = 0, the corresponding solution is x = 0. Or
whenever b ∈ C (A) (such as b being a specific column of A).

Can we get the same space C (A) using less than three
columns of A1? In this particular example, the third column of
A is a linear combination of the first two columns of A. C (A)
is therefore a 2−dimensional subspace of �4.

In general, if A is an m× n matrix, C (A) is a subspace of �m.
1In subsequent sections, we will refer to these columns as pivot columns.



Null Space

The null space N(A), is the space of all solutions to the
equation Ax = 0.

N(A) of an m × n matrix A is a subspace of �n.

Eg: One obvious solution to the system below is 0 (which will
always be ∈ N(A). Any other solution?

Ax =




1 1 2

2 1 3

3 1 4

4 1 5







x1

x2

x3


 =




0

0

0


 (7)



Finding elements of N(A)

Since columns of A are linearly dependent, a second solution
x∗ ∈ N(A) is as follows (and so are cx∗ for any c ∈ �)

x∗ =




1

1

−1


 (8)

The null space N(A) is the line passing through the zero
vector [0 0 0] and [1 1 − 1].
N(A) is always a vector space
Two equivalent ways of specifying a subspace.

1 Specify a bunch of vectors whose linear combinations will yield
the subspace.

2 Specify Ax = 0 and any vector x that satisfies the system is an
element of the subspace.

Set of all solutions to the equation Ax = b - do NOT form a
space?



Independence, Basis, and Rank

Independence: Vectors x1, x2, . . . , xn are independent if no
linear combination gives the zero vector, except the zero
combination. That is, ∀c1, c2, . . . , cn ∈ �, such that not all of

the ci ’s are simultaneously 0,
n�

i

cixi �= 0 .

Eg: x and 2x are dependent
The columns v1, v2, . . . , vn of a matrix A are independent if
the null-space of A is the zero vector. The columns of A are
dependent only if Ac = 0 for some c �= 0.
Space spanned by vectors: Vectors v1, v2, . . . , vn span a
space means that the space consists of all linear combinations
of the vectors. Thus, the space spanned by the columns
v1, v2, . . . , vn is C (A).
The rank of A (m × n) is the number of its maximally
independent columns ≤ n and those columns form the basis
of C (A) In the reduced echelon form, all columns will be pivot
columns with no free variables.
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�
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Singularity and Null Space

If A−1 exists, the only solution to Ax = b is x = A−1b.

⇔ A is singular iff there are solutions other than x = 0 to
Ax = 0.

⇔ A is singular iff it has a non-singular null-space N (A)

Eg: For A in (5), x = [3,−1] is a solution to Ax = 0.



Computing Solution to Linear System (only example)

A =




1 2 2 2

2 4 6 8

3 6 8 10


 (10)

elimination2 changes C (A) while leaving N(A) intact:

A1 =




[1] 2 2 2

0 0 2 4

0 0 2 4


 (11)

U =




[1] 2 2 2

0 0 [2] 4

0 0 0 0


 (12)

The matrix U is in the row echelon



Row reduced Echelon Form

Ux = 0, which has the same solution as Ax = 0

x1 + 2x2 + 2x3 + 2x4 = 0

2x3 + 4x4 = 0

Solution can be described by first separating out the two
columns containing the pivots, referred to as pivot columns
and the remaining columns, referred to as free columns.

Variables corresponding to the free columns are called free
variables, since they can be assigned any value.

Variables corresponding to the pivot columns are called pivot
variables

Following assignment of values to free variables: x2 = 1,
x4 = 0 ⇒ by back substitution, we get the following values:
x1 = −2 and x3 = 0.



General Procedure



General Procedure



Computing the Inverse: From Gauss to Gauss Jordan

A slight variant, which is invertible:

A =

�
1 3

2 7

�

How can we determine it’s inverse A−1?

A−1 =

�
a c

b d

�
(13)

The system of equations AA−1 = I can be written as:

�
1 3

2 7

��
a c

b d

�
=

�
1 0

0 1

�

We can solve the two systems to assemble A−1



Gauss Jordan Elimination contd.

The Guass-Jordan elimination method addresses the problem
of solving several linear systems Axi = bi (1 ≤ i ≤ N) at
once, such that each linear system has the same coefficient
matrix A but a different right hand side bi .
Key idea: elimination is multiplication by elimination (and
permutation) matrices, that transforms a coefficient matrix A
into an upper-triangular matrix U:

U = E32(E31(E21A)) = (E32E31E21)A

Now further apply elimination steps until U was transformed
into the identity matrix:

I = E13(E12(E23(E32(E31(E21A))))) = (E13E12E23E32E31E21)A = XA
(14)

By definition X = (E13E12E23E32E31E21) must be A−1.



Illustration of Inversion

Trick to carry out same elimination steps on two matrices A
and B : Create an augmented matrix [A B] and carry out the
elimination on this augmented matrix.
Gauss-Jordan: perform elimination steps on the augmented
matrix [A I ] (representing the equation AX = I ) to give the
augmented matrix [I A−1] (representing the equation
IX = A−1).

�
1 3 1 0

2 7 0 1

�
Row2−2×Row1=⇒

�
1 3 1 0

0 1 −2 1

�
Row1−3×Row2=⇒

�
1 0 7 −3

0 1 −2 1

�

Verify that A−1 is

A−1 =

�
7 −3

−2 1

�
(15)



Dealing with Rectangular Matrices

What if A is not a square matrix but rather a rectangular
matrix of size m × n, such that m �= n. Does there exist a
notion of A−1? The answer depends on the rank of A.

If A is full row rank and n > m, then AAT is a full rank m×m
matrix ⇔ (AAT )−1 exists with AT (AAT )−1 = I and is
therefore called the right inverse of A. When the right
inverse of A is multiplied on its left, we get the projection
matrix AT (AAT )−1A, which projects matrices onto the row
space of A.
If A is full column rank and m > n, then ATA is a full rank
n × n matrix ⇔ (ATA)−1 exists with (ATA)−1AT = I and is
therefore called the left inverse of A. When the left inverse of
A is multiplied on its right, we get the projection matrix
A(ATA)−1AT , which projects matrices onto the column space
of A.

Singular Value Decomposition: When A is neither full row
rank nor full column rank



Full Column Rank and Invertibility

If A is a full column rank matrix (that is, its columns are
independent), ATA is invertible.

We will show that the null space of ATA is {0}, which implies
that the square matrix ATA is full column (as well as row)
rank is invertible. That is, if ATAx = 0, then x = 0. Note
that if ATAx = 0, then xTATAx = ||Ax|| = 0 which implies
that Ax = 0. Since the columns of A are linearly independent,
its null space is 0 and therefore, x = 0.


