Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan

Overview of Linear Algebra



Solving Linear Equation: Geometric View

@ Simple example of two equations and two unknowns x and y
to be found: 2x —y =0 and —x 4+ 2y = 3, and in general,

@ One view: Each equation is a straight line in the xy plane,
and we seek the point of intersection of the two lines ( Fig. 2)

o Challenging in Higher Dimensions!



Three Different Views

@ Linear algebra, shows us three different ways of view solutions
if they exist): \
@ A direct solution to Ax = b, using techniques called 3%@ ct-a“"m
o2 . —elimination and back substitution.

@ A solution by “inverting” the matrix A, to give the solutionq #&%
x = A~ lb. 3\-\“"

© A vector space solution, by looking at notions called the
column space and nullspace of A. }\/

v
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Vectors and Matrices

A pair of numbers represented by a two-dimensional column vector:

<[]

Vector operations: scalar multiplication and vector addition:
If v=(—1,2), then what is u + v?
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Vectors and Matrices (contd)

@ Can be visualised as the diagonal of the parallelogram formed
by u and v

@ Any point on the plane containing the vectors u and v is some
linear combination au + bv,

@ Space of all linear combinations is simply the full
two-dimensional plane (%*?) containing u and v

@ Similarly, vectors generated by linear combinations of 2 points
in a three-dimensional space form some “subspace” of the
vector space R3

@ The space of linear combinations au + bv + cw could fill the
entire three-dimensional space.



Solving Linear Systems: Linear Algebra View

Recap the two equations:
2x—y =20

—x+2y=3

And now see their “vector” form:

LREHE

Solutions as linear combinations of vectors: That is, is there
some linear combination of the column vectors [2, —1] and [—1,2]
that gives the column vector [0, 3]7



Solving Linear Systems: Linear Algebra View
.
A=
-1 2

is a 2 x 2 (Coefficient) Matrix' - a rectangular array of numbers.

Further, if
0
X = x and b =
3% 3

Then, the matrix equation representing the same linear
combination is:

Ax
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A 3 x 3 Case

2x—y =0
—x+2y—z=-1
3y +4z=4
2 -1 0
A= —1 2 -1
0 -3 4
0
b= -1
4
Find values of x, y and z such that:
0
x(column 1 of A) + y(column 2 of A) + z(column 3 of A) = -1

4
It is easy to see now that the solution we are after is the solution to the matrix equation Ax = b:



What about insolvable systems?

It may be the case that for some values of A and b, no values of
x,y and z would solve Ax = b:



Solution of Linear Equations by (Gauss) Elimination

2x—y =0
.f-
2(—x+2y:3>

Progressively eliminate variables from equations: First multiply
both sides of the second equation by 2 (leaving it unchanged):

\e
oLl
v Ao

—2x+4y =6 UV

Adding LHS of the first equation to the LHS of this new equation,
and RHS of the first equation to the RHS of this new equation
(does not alter anything):

(—2x+4y)+(2x—y)=6+0 or 3y=6

———



You can see that x has been “eliminated” from the second
equation and the set of equations have been said to be
transformed into an upper triangular form.

AT N N e

wr =0 e )

= y = 6/3 = 2. And substituting back y into the first equation,
2x —2=0o0r x=1.



Row Elimination: More illustration

x+2y+z=2
3x+8y+z=12
by 4+z=2 "
. . o>
Coefficient matrix: \\c \qu

S 0

e The (2,1) step: First eliminate x from the second equation
= multiply the first equation by a multiplier (a21/a11 ) and
subtract it from the second equation.

@ a31 is called the pivot: Goal is to eliminate x coefficient in the
second equation.




RHS, after the first elimination step, is:

b; =



Row Elimination: More illustration

1 2 1
Al=0 2 =2
O® 1
(5\0 (}"L)
e The (3,1) step for eliminating a3;: Nothing to do, so

A = A
e The (3,2) step for eliminating as,: ay; is the next pivot...

12 1
As=1]0 2 -2 WASYO
oo o
0 O 5 Y 0\ o

&\l o c‘\
o Asis called an upper triangular matrix -~~~ ™




@ Sequence of operations on Ax to get Azx = multiplying
by a sequence of “elimination matrices”

@ Eg: A; and by can be obtained by pre-multiplying A and b
respectively by the matrix Ep;:

@ This also holds for E3» and so on. Make sure and verify that
you understand Matrix multiplication!

@ Multiplying matrices A and B is only meaningful if the
number of columns of A is the same as the number of rows of
B. That is, if Ais an m x n matrix, and B is an n x k matrix,
then AB is an m x_k matrix.




More on Matrix Multiplication

@ Matrix multiplication is “associative”; that is,
(AB)C = A(BCQ)

o But, unlike ordinary numbers, matrix multiplication is not
“commutative”. That is AB # BA

@ Associativity of matrix multiplication allows us to build up a
sequence of matrix operations representing elimination.

1 0 O 1 0 O
Ez3s;=]10 1 0 Ex; =0 1 0
0 0 1 0 1

@ General rule: If we are looking at n equations in m unknowns,
and an elimination step involves multiplying equation j by a
number g and subtracting it from equation i, then the
elimination matrix Ej; is simply the n x m “identity matrix” /,
with a;; = 0 in / replaced by —q.



Elimination as Matrix Multiplication

@ For example, with 3 equations in 3 unknowns, and an
elimination step that “multiplies equation 2 by 2 and
subtracts from equation 3":

1 0 O 1 0 O
| = 0O 1 0 Ezp = 0 1 0
0 0 1 0o -2 1

@ The three elimination steps give:

E3zE31E01(Ax) = E3pEz1Ex1b

which, using associativity is:

Ux = (E32E31E21)b =cC (3)

with U be the obvious upper triangular matrix



Elimination as Matrix Multiplication

1 2
U= -2 c= 6 (4)
5 —10

@ Just as a single elimination step can be expressed as
multiplication by an elimination matrix, exchange of a pair of

equations can be expressed by multiplication by a permutat/on
matrix. Consider.. ¢ %

L]
4,(\ U,q_& ey tz=2
@"'\&5 ov (>l<—|—2y—}—z:2) K:b 3 1

o
‘b‘ '% 3x+8y+z=12
e coefficient matrix A can benefit from permutation! Why?




Elimination as Matrix Multiplication

@ No solution exists, if, in spite of all exchanges, elimination
results in a 0 in any one of the pivot positions

@ Else, we will reach a point where the original equation Ax = b
is transformed into Ux = ¢

o Final step is back-substitution, in which variables are
progressively assigned values using the right-hand side of this
transformed equation

e Eg: z = —2, back-substituted to give y = 1, which finally
yields x = 2.



Matrix Inversion for Solving Linear Equations

PR LA
e Given Ax = b, we find x = A~ b, where A~! is called the
inverse of the matrix.

o A7l is such that AA~! = | where / is the identity matrix.

@ Since matrix multiplication does not necessarily commute: If
for an m x n matrix A, there exists a matrix Azl such that
& ATA =1, (nx n), then A!is called the left inverse of A.

_(\s"‘\o Similarly, if there exists a matrix AEl such that AAE1 =
(m x m), then Az is called the right inverse of A. > w\&N

e For square matrices, the left and right inverses are the same:
ALHAARY) = (AATDAR!
L

Pt
@ For square matrices, we can simply ?a:lk about “the inverse”
AL

@ Do all square matrices have an inverse?



Not Every Square Matrix has an Inverse

@ Here is a matrix that is not invertible:

13
Azlz 6] )

&30
o If A~1 exists, the solution will be x = A~1b and elimination
must also produce an upper triangular matrix with non-zero
pivots.
@ Thus, the condition works both ways: if elimination
produces non-zero pivots then the inverse exists and
otherwise, the matrix is not invertible or singular (verify

for (5))
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@ < Matrix will be singular iff its rows or columns are
linearly dependent (rank < n)



Not Every Square Matrix has an Inverse

@ Here is a matrix that is not invertible:

13
Azlz 6] )

o If A~! exists, the solution will be x = A~b and elimination
must also produce an upper triangular matrix with non-zero
pivots.

@ Thus, the condition works both ways: if elimination
produces non-zero pivots then the inverse exists and
otherwise, the matrix is not invertible or singular (verify
for (5))

@ < Matrix will be singular iff its rows or columns are
linearly dependent (rank < n)

@ < Matrix will be singular iff its “determinant” is 0 and is
related to the elimination producing non-zero pivots.



Vector Spaces

o If a set of vectors V is to qualify as a “vector space” it should
be “closed” under the operations of addition and scalar
multiplication.

@ Thus, given vectors u and v in a vector space, all scalar
multiples of vectors au and bv are in the space, as is their
linear combination au + bv.

e If a subset (Vs) of any such space is itself a vector space
(that is, (Vs) is also closed under linear combination) then
(Vs) is called a subspace of (V).

o Eg: Set of vectors 2, M consisting of all 2 x 2 matrices

o Set (R2)F (2-D vectors in the positive quadrant is not a
vector space.

&y ax-S "‘[iy”ft 0&\1*@7—)4



Column Space and Solution to Linear System

e Column space of A, or C(A): All possible linear combinations
of the columns of A, that produce in effect, all possible b's

@ Is there a solution to Ax =b < b € C(A):

@ In the example below, is C(A) the entire 4—dimensional space
R4? If not, how much smaller is C(A) compared to R*?

g
\'ad °L
n <
/.{a ‘0 (’(-a\
b‘\
/‘

[ = T =S =
g b W N

A W N =

e Equivalently, with Ax = b, for which right hand sides b does a
solution x always exist?

@ Definitely does not exist for every right hand side b, (4
equations in 3 unknowns)



More on Column Space

o Which right hand side b allows the equation to be solved

1 1 2 B} ,

Ax = 2 13 xl = bl (6)
3 1 4
4 1 5 s b3

e Eg: If b =0, the corresponding solution is x = 0. Or
whenever b € C(A) (such as b being a specific column of A).

@ Can we get the same space C(A) using less than three )“\!‘ XV
columns of A'? In this particular example, the third column of r}}
Ais a linear combination of the first two columns of A. C(A)
is therefore a 2—dimensional subspace of R*.

@ In general, if Aiis an m x n matrix, C(A) is a subspace of R™.

In subsequent sections, we will refer to these columns asypivot-columns.



Null Space

@ The null space N(A), is the space of all solutions to the
equation Ax =0. , ©,=©

@ N(A) of an m x n matrix A is a subspace of R".

e Eg: One obvious solution to the system below is 0 (which will
always be € N(A). Any other solution?

11 2
201 3 || ™ 0
Ax = =10 7
31 4 || ™ )
X3 0
4 1 5 5

hns*. ‘g ,‘any\(“) < Nno o% w\S "flS \



Finding elements of N(A)

@ Since columns of A are linearly dependent, a second solution
x* € N(A) is as follows (and so are cx* for any ¢ € R)

ot N
' 2 Cot™  v* x*
= 1 - }sb"‘\\ @td\&)
-1 ‘)SS
G&

The null space N(A) is the line passing through the zero
vector [0 0 0] and [1 1 —1]. N cok P\'i,,cod')t,o
o N(A) is always a vector space < I\ts N
e Two equivalent ways of specifying a subspace.
© Specify a bunch of vectors whose linear combinations will yield
the subspace.
Specify Ax = 0 and any vector x that satisfies the system is an
element of the subspace.
@ Set of all solutions to the equation Ax = b - do NOT form a
space?




Independence, Basis, and Rank

o Independence: Vectors x1,xo,...,X, are independent if no
linear combination gives the zero vector, except the zero
combination. That is, VYci, ¢, ..., cy € R, such that not all of

n
the c;'s are simultaneously 0, Z cxi #0 .
i
e Eg: x and 2x are dependent

@ The columns vi,v,...,v, of @a matrix A are independent if
the null-space of A is the zero vector. The columns of A are
dependent only if Ac = 0 for some c # 0.

@ Space spanned by vectors: Vectors vi,va,...,v, span a
space means that the space consists of all linear combinations
of the vectors. Thus, the space spanned by the columns
Vi,V2,...,V, is C(A).

@ The rank of A (m x n) is the number of its maximally
independent columns < n and those columns form the basis
of C(A),In the reduced echelon form, all columns will be pivot
columns with no free variables.



Not Every Square Matrix has an Inverse

2 6

N A:[”] (©)
&

If A~1 exists, the solution will be x = A~1b and elimination
must also produce an upper triangular matrix with non-zero
pivots.

Thus, the condition works both ways: if elimination
produces non-zero pivots then the inverse exists and
otherwise, the matrix is not invertible or singular (verify
for (5))

< Matrix will be singular iff its rows or columns are
linearly dependent (rank < n)

< Matrix will be singular iff its “determinant” is 0 and is
related to the elimination producing non-zero pivots.



Singularity and Null Space

If A1 exists, the only solution to Ax = b is x = A~ 'b.

< A is singular iff thc?re are{?lutions other than x = 0 to
A

Ax=0. N"{\;( > ‘\4\‘7\

& Ais singular iff it has a non-suage=#r null-space N'(A)

Eg: For Ain (5), x = [3,—1] is a solution to Ax = 0.



Computing Solution to Linear System (only example)

1 2 2 2
A=|2 4 6 8 (10)
3 6 8 10

elimination? changes C(A) while leaving N(A) intact:

1] 2 2

Al=| 0 0 2 (11)
0 0 2
1] 2 2

U=| 0 0 [2] 4 (12)
00 0 0



Row reduced Echelon Form

Ux = 0, which has the same solution as Ax =0
X1+ 2x0 4+ 2x3 +2x4 =0
2x3+4x4 =0

@ Solution can be described by first separating out the two
columns containing the pivots, referred to as pivot columns
and the remaining columns, referred to as free columns.

@ Variables corresponding to the free columns are called free
variables, since they can be assigned any value.

@ Variables corresponding to the pivot columns are called pivot
variables

@ Following assignment of values to free variables: x, =1,
x4 = 0 = by back substitution, we get the following values:
x1 = —2 and x3 = 0.



General Procedure

Ax=V DY
J- . *(\ ‘0 e
f(\if‘ \}‘;z\n" oy A Mov‘f'

r=m=n,. FM<N r=p<m

s R=I | R=[IF] Rr=[10)
§

) Infimtely many
g Umnque solution solutions 0 or 1 solution

N-wn Frea
vass.




General Procedure



Computing the Inverse: From Gauss to Gauss Jordan

@ A slight variant, which is invertible:

1 3
A=
2 7
@ How can we determine it's inverse A~1?

Alzlz ;] (13)

The system of equations AA~! = | can be written as:

IR

@ We can solve the two systems to assemble A1




Gauss Jordan Elimination contd.

- o The Guass-Jordan elimination method addresses the problem

B"j of solving several linear systems Ax; =b; (1 <i < N) at
u once, such that each linear system has the same coefficient
?t' matrix A but a different right hand side b;.
< e Key idea: elimination is multiplication by elimination (and

permutation) matrices, that transforms a coefficient matrix A

into an upper-triangular matrix U:
same dv

1
/N’rf bllblfh'-—

U = Ez(E31(E21A)) = (EzzEz1E21)A

@ Now further apply elimination steps until U was transformed
into the identity matrix:

I = E13(E12(E23(Es2(E3i(E21A))))) = (ErzEroExzEznEz1 Exr) A = X/
(14)
By definition X = (E13E12E23E32E31E21) must be A~ L.
o



[llustration of Inversion

@ Trick to carry out same elimination steps on two matrices A
and B: Create an augmented matrix [A B] and carry out the
elimination on this augmented matrix.

@ Gauss-Jordan: perform elimination steps on the augmented
matrix [A I] (representing the equation AX = /) to give the
augmented matrix [/ A~!] (representing the equation
IX = A1),

1 3 1 0 Rowy —2 X Rowy 1 3 1 0 Rowj —3 X Rowp 1 0 7 -3
= =
2 7 0 1 0 1 —2 1 0 1 -2 1

Verify that A71 is

A7l = [ T3 ] (15)



Dealing with Rectangular Matrices

@ What if A is not a square matrix but rather a rectangular
matrix of size m x n, such that m # n. Does there exist a
notion of A~1? The answer depends on the rank of A.

o If Ais full row rank and n > m, then AAT is a full rank m x m
matrix < (AAT)~! exists with AT(AAT)"! =/ and is
therefore called the right inverse of A. When the right
inverse of A is multiplied on its left, we get the projection
matrix AT(AAT)~1A, which projects matrices onto the row
space of A.

o If Ais full column rank and m > n, then AT Ais a full rank
n x n matrix < (ATA)7! exists with (ATA)"1AT = [ and is
therefore called the left inverse of A. When the left inverse of
A is multiplied on its right, we get the projection matrix
A(ATA)~LAT, which projects matrices onto the column space
of A.

@ Singular Value Decomposition: When A is neither full row
rank nor full column rank




Full Column Rank and Invertibility

e If Ais a full column rank matrix (that is, its columns are
independent), AT A is invertible.

o We will show that the null space of AT A is {0}, which implies
that the square matrix AT A is full column (as well as row)
rank is invertible. That is, if AT Ax = 0, then x = 0. Note
that if ATAx = 0, then x” AT Ax = ||Ax|| = 0 which implies
that Ax = 0. Since the columns of A are linearly independent,
its null space is 0 and therefore, x = 0.



