
Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan

Overview of Probability Theory1

1Basic notes at https://www.cse.iitb.ac.in/~cs725/notes/
classNotes/misc/BasicProbAndStats.pdf and advanced notes at
https://www.cse.iitb.ac.in/~cs725/notes/classNotes/misc/

CaseStudyWithProbabilisticModels.pdf



A review of probability theory

Sample space(S): A sample space is defined as a set of all
possible outcomes of an experiment. Example of an
experiment would be a coin pair toss. In this case
S = {HH,HT ,TH,TT}.
Event (E) : An event is defined as any subset of the sample
space. Total number of distinct events possible is 2|S |, where
|S | is the number of elements in the sample space.

Random variable (X) : A random variable is a mapping (or
function) from set of events to a set of real numbers.
Continuous random variable is defined thus

X : 2S → R

On the other hand a discrete random variable maps events to
a countable set (e.g. Natural Numbers)

X : 2S → Countable



Axioms of Probability

For every event E , 0 ≤ Pr(E ) ≤ 1

Pr(S) = 1

If E1,E2, . . . ,En is a set of pairwise disjoint events, then

Pr(
n�

i=1

Ei ) =
n�

i=1

Pr(Ei )





Bayes’ Theorem

Let B1,B2, ...,Bn be a set of mutually exclusive events that
together form the sample space S. Let A be any event from the
same sample space, such that P(A) > 0. Then,

Pr(Bi/A) =
Pr(Bi ∩ A)

Pr(B1 ∩ A) + Pr(B2 ∩ A) + · · ·+ Pr(Bn ∩ A)
(1)

Using the relation P(Bi ∩ A) = P(Bi ) · P(A/Bi )

Pr(Bi/A) =
Pr(Bi ) · Pr(A/Bi )�n
j=1 Pr(Bj) · Pr(A/Bj)

(2)





Using Bayes’ Theorem

A lab test is 99% effective in detecting a disease when in fact it is
present. However, the test also yields a false positive for 0.5% of
the healthy patients tested. If 1% of the population has that
disease, then what is the probability that a person has the disease
given that his/her test is positive?



Independent Events

Two events E1 and E2 are called independent iff their probabilities
satisfy

P(E1,E2) = P(E1) · P(E2) (3)

where P(E1,E2) means P(E1 ∩ E2)
In general, events belonging to a set are called as mutually
independent iff, for every finite subset, E1, · · · ,En, of this set

Pr(
n�

i=1

Ei ) =
n�

i=1

Pr(Ei ) (4)



Agenda

Distribution function

Probability Density/Mass Function
Cumulative Distribution Function

Statistical Measures

Expectation
Variance
Covariance

Random Variables

Bernoulli Random Variable
Binomial Random Variable
Normal Random Variable

Central Limit Theorem



Uncertainty

We are trying to build systems that understand and (possibly)
interact with the real world

We often can not prove something is true, but we can still ask
how likely different outcomes are or ask for the most likely
explanation

Probability theory is nothing but common sense reduced to
calculation. — Pierre Laplace, 1812

We will restrict ourselves to a relatively informal discussion of
probability theory



Notations

A random variable X represents the outcome or the state of
the world

We will write Pr(X) to mean probability of event X,
Probability(X=x)

Sample space: the space of all possible outcomes (may be
discrete, continuous or mixed)

p(x) is the probability mass (density) function

Assigns a number to each point in sample space
Non-negative, sums (integrates) to 1
Intuitively: how often does x occur, how much do we believe in
x.





Pr - Probability of an event in general

F - Cumulative distribution function

p - Probability distribution function (pdf) or probability mass
function (pmf)

pdf - pdf occurs in case of continuous random variable

pmf - pmf occurs in case of discrete random variable



Example - Part of Speech

POS tagging is a problem of great importance in the field of
Natural Language Processing, NLP
Input: A set of n-words
Output: POS tag for each word





Assuming the picking of words is done independently, find
probability that the set contains a ’noun’ given that it contains a
’verb’.

Solution:

Probability that a word is of part of speech type ’k’ is pk

Let Ak be the probability that the set contains pos type ’k’

Pr(Ak) = 1− (1− pk)
n

where (1− pk)
n is that all ’n’ words are not of pos of type ’k’.

Pr(Anoun/Averb) =
Pr(Anoun

�
Averb)

Pr(Averb)

Pr(Ak1
�
Ak2) = 1− (1− pk1)

n − (1− pk2)
n + (1− pk1 − pk2)

n

Pr(Anoun/Averb) =
1−(1−pnoun)n−(1−pverb)

n+(1−pnoun−pverb)
n

1−(1−pverb)n



Distribution Functions

pmf: It is a function that gives the probability that a discrete
random variable is exactly equal to some value (Src: wiki)

pX (a) = Pr(X = a)

pdf: A probability density function of a continuous random
variable is a function that describes the relative likelihood for
this random variable to occur at a given point in the
observation space (Src: Wiki)

Pr(X ∈ D) =
�
D p(x)dx



Cumulative Distribution Function

Case: Discrete Random Variable

F (a) = Pr(X <= a)

Case: Continuous Random Variable

F (a) = Pr(X <= a) =
� a
−∞ p(x)dx

Note: pdf for continuous distribution can be obtained by
differentiating the cdf of that random variable:

f (a) = dF (x)
dx |x=a



Joint Distribution Function

• If p(x,y) is a joint pdf i.e. for continuous case:

F (a, b) = Pr(X <= a,Y <= b) =
� b
−∞

� a
−∞ p(x , y)dxdy

p(a, b) = ∂2F (x ,y)
∂x∂y |a,b

• For discrete case i.e. p(x,y) is a joint pmf:

F (a, b) =
�

x<=a

�
y<=b p(x , y)



Marginalization

Marginal probability is the unconditional probability P(A) of
the event A; that is, the probability of A, regardless of
whether event B did or did not occur.

If B can be thought of as the event of a random variable X
having a given outcome, the marginal probability of A can be
obtained by summing (or integrating, more generally) the
joint probabilities over all outcomes for X.

For example, if there are two possible outcomes for X with
corresponding events B and B’, this means that

P(A) = P(A
�
B) + P(A

�
B �)

Discrete case: P(X = a) =
�

y p(a, y)

Continuous case: Px(a) =
�∞
−∞ p(a, y)dy



Example

Let X and Y are independent continuous random variables with
same density functions

p(x) =

�
e−x if x > 0;
0 otherwise.

Find density X
Y .



Solution

F X
Y
(a) = Pr(XY <= a)

=
�∞
0

� ya
0 p(x , y)dxdy

=
�∞
0

� ya
0 e−xe−ydxdy

= 1− 1
a+1

= a
a+1

f X
Y
(a) = derivative of F X

Y
(a) w.r.t a

= 1
(a+1)2

> 0



Conditional Density

Suppose X and Y are two random variable then we can define the
conditional probability density of X given Y, denoted as X |Y

Discrete Case

pX (
x

Y=y ) = P(X=x
Y=y ) =

P(X=x ,Y=y)
P(Y=y)

Continuous case

pX (
x

Y=y ) =
pX ,Y ( X

Y
)

pY (y) =
pX ,Y ( X

Y
)�∞

−∞ p(x ,y)dx



Joint Probability Distribution

Prob(X = x ,Y = y)

”Probability of X=x and Y=y”
p(x , y)

Conditional Probability Distribution

Prob(X = x |Y = y)

”Probability of X=x given Y=y”
p(x |y) = p(x , y)/p(y)



Rules of Probability

Sum Rule (marginalization/ summing out)

p(x) = Σyp(x , y)
p(x1) = Σx2Σx3 ...Σxnp(x1, x2, ..., xn)

Product/Chain Rule

p(x , y) = p(y , x)p(x)
p(x1, x2, ..., xn) = p(x1)p(x2|x1)...p(xn|x1, x2..., xn)



Bayes Rule

One of the most important formulas in probability theory

p(x |y) = p(y |x)p(x)
p(y) = p(y ,x)p(x)

Σxp(y |x)p(x)

This gives away a way of reversing conditional probabilities



Independence of Random Variables

Two random variables are said to be independent iff their
joint distribution factors

X ⊥ Y ⇐⇒ p(x , y) = p(y |x)p(x) = p(x |y)p(y) = p(x)p(y)

Two random variables are conditionally independent iff
given a third they are independent after conditioning on the
third variable

X ⊥ Y |Z ⇐⇒ p(x , y |z) = p(y |x , z)p(x |z) =
p(x |y , z)p(y |z) = p(x |z)p(y |z)∀Z



Expectation

• Discrete case: Expectation is equivalent to probability weighted
sums of possible values. If X is a discrete random variable

E (X ) = ΣixiPr(xi )

If the random variable is a function of x, then

E (X ) = Σi f (xi )Pr(xi )

• Continuous case: Expectation is equivalent to probability
density weighted integral of possible values.

E (X ) =
�∞
−∞ xp(x)dx

If the random variable is a function of x, then

E (X ) =
�∞
−∞ f (x)p(x)dx



Properties of Expectation

1 E [X + Y ] = E [X ] + E [Y ] Proof HW

2 E [(X − c)2] ≥ E [(X − µ)2] Proof HW
where µ = E [X ]
For any constant c and any random variable X

3 E [cX ] = cE [X ] Proof HW



Variance

For any random variable X, variance is defined as follows:

Var [X ] = E [(X − µ)2]

⇒ Var [X ] = E [X 2]− 2µE [X ] + µ2

⇒ Var [X ] = E [X 2]− (E [X ])2

Var [αX + β] = α2Var [X ]



Covariance

For random variables X and Y, covariance is defined as:

Cov [X ,Y ] = E [(X − E (X ))(Y − E (Y ))] = E [XY ]− E [X ]E [Y ]

If X and Y are independent then their covariance is 0, since in that
case

E [XY ] = E [X ]E [Y ]

Note: However, covariance being 0 does not necessarily imply that
the variables are independent.

Properties:

1 Cov [X + Z ,Y ] = Cov [X ,Y ] + Cov [Z ,Y ]

2 Cov [ΣiXi ,Y ] = ΣiCov [Xi ,Y ]

3 Cov [X ,X ] = Var [X ]



Chebyshev’s Inequality

Chebyshev’s inequality states that if X is any random variable with
mean µ and variance σ then ∀k > 0

Pr [|X − µ| ≥ k] ≤ σ2

k2

Implications:
• If n tends to infinity, then the data mean tends to converge to µ,
giving rise to the weak law of large numbers.

• If Xi are independent and identically distributed random
variables,

Pr [|X1+X2+..+Xn
n − µ| ≥ k] tends to 0 as n tends to ∞



Important Random Variables

Bernoulli Random Variable: It is a discrete random variable
taking values 0,1

Say, Pr [Xi = 0] = 1− q where q�[0, 1]
Then Pr [Xi = 1] = q

E [X ] = (1− q) ∗ 0 + q ∗ 1 = q

Var [X ] = q − q2 = q(1− q)

Note: It represents the probability of success in a random event.
For example: Coin toss experiment can be modeled as a Bernoulli
random variable with Pr [Head ] = Pr [Xi = 1] = q



Binomial Random Variable It is a discrete variable where the
distribution is of number of 1’s in a series of n experiments with
{0,1} value, with the probability that the outcome of a particular
experiment is 1 being q.

A binomial distribution is the distribution of n-times repeated
bernoulli trials.

1 Pr [X = k] =
�n
k

�
qk(1− q)n−k

2 E [X ] = ΣiE [Yi ] where Yi is a bernoulli random variable

E [X ] = nq

3 Var [X ] = ΣiVar [Yi ] (since Yi ’s are independent)

Var [X ] = nq(1− q)

Example:
An example of Binomial distribution is the distribution of number
of heads when a coin is tossed n times.



Normal (Guassian) Distribution

It is a continuous distribution

p(x |µ, σ) = 1√
2πσ

exp {− 1
2σ2 (x − µ)2}

µ is the mean
σ2 is the variance

Exercise: Verify there mean and variance. For e.g.

E (X ) = µ =
�∞
−∞ x 1√

2πσ
exp {− 1

2σ2 (x − µ)2}dx

Multivariate Guassian

p(x |µ,Σ) = |2πΣ|−1/2 exp {−1
2(x − µ)TΣ−1(x − µ)}

x is now a vector
µ is the mean vector
Σ is the co-variance matrix



Properties of Normal Distribution

All marginals of a Gaussian are again Gaussian

Any conditional of a Gaussian is Gaussian

The product of two Gaussians is again Gaussian

Even the sum of two independent Gaussian RVs is a Gaussian

Note: Many of the standard distributions belong to the family of
exponential distributions

Bernoulli, binomial/multinomial, Poisson, Normal (Gaussian),
beta/Dirichlet ...

Share many important properties - e.g. They have a
conjugate prior. (We will discuss this in next lecture)



Central Limit Theorem

If X1,X2, ..,Xm is a sequence of i.i.d. random variables each having
mean µ and variance σ2

Then for large m, X1 + X2 + ..+ Xm is approximately normally
distributed with mean mµ and variance mσ2

If X ∼ N(µ, σ2)

Then P[x ] = 1
σ 2√2π

e
−(x−µ)2

2σ2

It can be shown by CLT

X1+X2+..+Xn−nµ
σ 2√n

∼ N(0, 1)

Sample Mean: µ̂ ∼ N(µ, σ
2

m )


