Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan

Overview of Probability Theory?

!Basic notes at https://www.cse.iitb.ac.in/~cs725/notes/
classNotes/misc/BasicProbAndStats.pdf and advanced notes at
https://www.cse.iitb.ac.in/~cs725/notes/classNotes/misc/
CaseStudyWithProbabilisticModels.pdf



A review of probability theory

r':\-o Sample space(S): A sample space is defined as a set of all
F; o°"p055|ble outcomes of an experiment. Example of an

b %experlment would be a coin pair toss. In this case

S VS ={HH,HT , TH,TT}. |g\= E-2x2
"\~' Ub Event (E) : ‘An event is defined as any subset of the sample

Ag- space. Total number of distinct events possible is 2/5/, where
L |S| is the number of elements in the sample space.

\.JT) @ Random variable (X) : A random variable is a mapping (or

<= function) from set of events to a set of real numbers.
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Continuous_random variable is gefined thus
H2l e 5 S(comn, k')-rS(C"‘" '  value of R defines
O xeion, 2\ R N

On the other hand a discrete random variable maps events to
a countable set (e.g. Natural Numbers)

X : 25 — Countable Se¥
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Axioms of Probability
W7 R(x= V) € [o.ﬂ

@ For every event E, 0 < Pr(E) <1 } &
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o If F1,E», ..., E, is a set of pairwise disjoint events, then
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Bayes' Theorem
RGN
FL > e

Let By, By, ..., B, be a set of mutually exclusive events that
together form the sample space S. Let A be any event from the

€ sam space, suc a en, &nh)
(é)%\f h that P(A) > 0. Then, f¢(®c/R)= G
TOE: b B w\)

Pr(BiNA)+ Pr(BoNA)+---+ Pr(B,NA
(%5 2 ) ’PU\)
Using the relation P(B; N A) = P(B;) - P(A/B;)

Pr(B;) - Pr(A/B;) )
Z” Pr(B;) - Pr(A/B))
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Using Bayes' Theorem

DD ¢ 7

P91 ©)=0-29

A lab test is 99% effective in detecting a disease when in fact it is
ipresent. However, the test also yields a false positive for 0.5% of
the healthy patients tested. If 1% of the population has that
disease, then what is the probabiliy that a person has the disease
given that his/her test is positive? % ('D\? i-:- 7

N(o)- PLRIDAOD o (530" Pu(FlnD: 000
() (2{(,..1)750-0("\

_G PO
QD) D)« e(?\~D) d~D




Independent Events

Two events E; and E, are called independent iff their probabilities \

satisfy \](f
*f-G i"q
P(E1, B2) = P(E1) - P(E> fiC j((@‘ -\Q«.J
where P(Ey, E5) means P(E1 N E « W@ «Y>
In general, events belonging to a set are called as mutually
independent iff, for every finite subset, E1,--- , E,, of this set
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SQ" ° .CL.Jmulative Distribution Function ﬂfgﬁ QYLCA%‘
ﬁ% @ Statistical Measures 0,3
o Expectation
e Variance
e Covariance
@ Random Variables
e Bernoulli Random Variable
e Binomial Random Variable
o Normal Random Variable

@ Central Limit Theorem



Uncertainty

@ We are trying to build systems that understand and (possibly)
interact with the real world

@ We often can not prove something is true, but we can still ask
how likely different outcomes are or ask for the most likely

explanation g (fp N R:an"!;r“? Z?)oo g— C'“" e Weey
Probability theory is nothing but common sense reduced to

calculation. — Pierre Laplace, 1812

We will restrict ourselves to a relatively informal discussion of
probability theory



@ A random variable X represents the outcome or the state of
the world

e We will write Pr(X) to mean probability of event X,
Probability (X=x)

e Sample space: the space of all possible outcomes (may be
discrete, continuous or mixed)

o p(x) is the probability mass (density) function (&ve ¢ T\)

o Assigns a number to each point in sample space o b \'o\oﬂ* ’
o Non-negative, sums (integrates) to 1( e 0-)
o Intuitively: how often does x occur, how much do’v‘\?e%eheve in
N
X.
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Pr - Probability of an event in general
F - Cumulative distribution function

p - Probability distribution function (pdf) or probability mass
function (pmf)

pdf - pdf occurs in case of continuous random variable

pmf - pmf occurs in case of discrete random variable



Example - Part of Speech

POS tagging is a problem of great importance in the field of
Natural Language Processing, NLP

Input: A set of n-words

Output: POS tag for each word

WORDS TAGS
R
the
waiter
cleared .
the —1
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Assuming the picking of words is done independently, find
probability that the set contains a 'noun’ given that it contains a
'verb'.

Solution:
@ Probability that a word is of part of speech type 'k’ is pk
o Let Ax be the probability that the set contains pos type 'k’

Pr(Ak) =1- (]. — pk)m
where (1 — pg)™is that all 'n’ words are not of pos of type 'k’.

Pr(Anoun/AVerb) = mAﬁ:u%Efﬁrbl
Pr(AiiNA) =1- (1= pa)™ (1= p2)™ (1 = px = pi2)™

1— l_Pn n m_ l_Pver ﬂ‘+ l_Pn n— Pveri n
Pr(Ancun/ Averb) = *—(1-pooun) (- part) (. poown s




Distribution Functions

o pmf: It is a function that gives the probability that a discrete
random variable is exactly equal to some value (Src: wiki)

px(a) = Pr(X = a)

@ pdf: A probability density function of a continuous random
variable is a function that describes the relative likelihood for
this random variable to occur at a given point in the
observation space (Src: Wiki)




Cumulative Distribution Function

Case: Discrete Random Variable & O%J(eﬁ
F(a) = Pr(X <=a) ‘used
Case: Continuous Random Variable

F(a) = Pr(X <=a) = [?__ p(x)dx

\
Note: pdf for continuous distribution can be obtained by W“\\o
differentiating the cdf of that random variable: &)3\ 55
x ®
F(a) dF( ’x a \‘!.0"."{\
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Joint Distribution Function

e If p(x,y) is a joint pdf i.e. for continuous case:
F(a,b) = Pr(X <=a,Y <= b) f J7 . p(x, y)dxdy
p(a, b) = P2F(xy)

Ox0y
A

a,b

e For discrete case i.e. p(x,y) is a joint pmf:

F(avb)::E:x<:a§:y<:bp(XaY)



Marginalization

e Marginal probability is the unconditional probability P(A) of
the event A; that is, the probability of A, regardless of
whether event B did or did not occur.

o If B can be thought of as the event of a random variable X
having a given outcome, the marginal probability of A can be
obtained by summing (or integrating, more generally) the
joint probabilities over all outcomes for X.

@ For example, if there are two possible outcomes for X with
corresponding events B and B’, this means that

P(A) = P(ANB)+ P(ANB')
Discrete case: P(X =a)=3_, p(a,y)

2o pla,y)d

Continuous case: Py(a) =




Let X and Y are independent continuous random variables with
same density functions

(x) = e ™ ifx>0;
PXT=19 0 otherwise:
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Conditional Density

Suppose X and Y are two random variable then we can define the
conditional probability density of X given Y, denoted as X|Y

Discrete Case

X o X=x\ _ P(X=x,Y=y)
PX(Y_:},) = P( Y:y) - P(Y:y)y
Continuous case

x o pxyy(&) _ PX,Y(A)
PX( Y:y) - py(y))/ - ffOOQP(XI’)dX



Joint Probability Distribution

® Prob(X =x,Y =y)
e "Probability of X=x and Y=y"
° p(x,y)

Conditional Probability Distribution

e Prob(X =x|Y =y)
e "Probability of X=x given Y=y"
o p(xly) = p(x,y)/p(y)



Rules of Probability

@ Sum Rule (marginalization/ summing out)

p(x) = Xy p(x,y)
p(x1) = L, Loy Xy, P(X1, X2, -0y Xn)
@ Product/Chain Rule

p(x,y) = p(y, x)p(x)

< POx1, X2, - Xn) = POA)PLR1X) 2P (X X1, X2y Xk
FERE T = Plral Rt o) P04 - %)
ok B 3R P Gl %)
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Bayes Rule

@ One of the most important formulas in probability theory

_ ply¥)p(x) _  plyx)p(x)
p(xly) = =505 = S0

@ This gives away a way of reversing conditional probabilities



Independence of Random Variables

@ Two random variables are said to be independent iff their
joint distribution factors

X LY < p(x,y) = p(y|x)p(x) = p(x|y)p(y) = p(x)p(y)

@ Two random variables are conditionally independent iff

given a third they are independent after conditioning on the
third variable

X LY|Z < p(x,ylz) = plylx, 2)p(xlz) =
p(xly. 2)ply|2) = p(x|2)p(y|2)¥Z



Expectation

e Discrete case: Expectation is equivalent to probability weighted
sums of possible values. If X is a discrete random vabable

N
E(X) = Tix; Pf&j\i K t
AW 4&0-‘5

If the random variable is a function of x, then
E(X) = Xif(xi)Pr(x;)

e Continuous case: Expectation is equivalent to probability
density weighted integral of possible values.

E(X) = [, xp(x)d

If the random variable is a function of x, then



Properties of Expectation
Q@ E[X+Y]=E[X]+E[Y] Proof HW

Q@ E[(X — )] > E[(X — 1)?] Proof HW
where p = E[X]
Eor any constant ¢ and any random variable X v
Z’-?GCEJ Squaved deviehion wWmdn v leas
@ E[cX] = cE[X] fasva expecked vabue proof

& = ECR)




Variance

For any random variable X, varianitj, is defined as follows:
ed Jenahon
Var[X] = E[(X — p)? cted S
ar[X] = E[(X = p)]  — Gupe ¥rFf0Y“ s E
= Var[X] = E[X?] — 2uE[X] + p2
= Var[X] = E[X2] - (E[X])2
W

Var[aX + ] = a2 Var[X]



Covariance

For random variables X and Y, covariance is defined as:

Cov[X, Y] = E[(X — E(X))(Y — E(Y))] = E[XY] — E[X]E[Y]

3 Snfled ded
If X'and Y are indegg‘r}g‘gﬁt then their (‘:‘ovarlance IS 3 since in that

case Co vse
Exy] = EXIE] Y A o

Note: However, covariance being 0 does not necessarily imply that
the variables are independent. 1

W KLY ave o C‘W[?c"/) O
Properties: But convede does Wl ‘ ’
o COV[X + 27 Y] = COV[X, Y] + COV[Z7 Y] h°7‘\'a
@ Cov[L:X;, Y] = £;Cov[X;, Y] Q: Wiry /

@ Cov[X, X] = Var[X]



Chebyshev's Inequality

Chebyshev's inequality states that if X is any random variable with
mean g and variance ¢ then Yk > 0

PriX —pl >k < %

Implications:
e If n tends to infinity, then the data mean tends to converge to p,
giving rise to the weak law of large numbers.

e If X; are independent and identically distributed random
variables,

pr{|ZtXet X ) > k] tends to 0 as n tends to oo



Important Random Variables

Bernoulli Random Variable: It is a discrete random variable
taking values 0,1

Say, Pr[X;i = 0] =1 — q where g¢[0, 1]
Then PriXi=1]=g¢q

° E[X]=(1-q)*x0+gxl=gq
o Var[X]=q—q¢*=¢q(1—q)
Note: It represents the probability of success in a random event.

For example: Coin toss experiment can be modeled as a Bernoulli
random variable with Pr[Head] = Pr[X; = 1] = q



Binomial Random Variable It is a discrete variable where the
distribution is of number of 1's in a series of n experiments with
{0,1} value, with the probability that the outcome of a particular
experiment is 1 being q.

A binomial distribution is the distribution of n-times repeated
bernoulli trials.

Q PriX =kl =(})g"(1—q)" K
@ E[X] = X;E[Y]] where Y] is a bernoulli random variable
E[X] = nq
@ Var[X] = X;Var[Y]] (since Y;'s are independent)
Var[X] = nq(1 — q)
Example:

An example of Binomial distribution is the distribution of number
of heads when a coin is tossed n times.



Normal (Guassian) Distribution

@ It is a continuous distribution
p(xlp, o) = 7= exp {—50 (x — 1)}

e i is the mean

e 02 is the variance

@ Exercise: Verify there mean and variance. For e.g.
E(X) = 1= [, xom exp {5y (x — )2 o
e Multivariate Guassian

p(x|i. ) = 2wE] /2 exp {—h(x — 1) T (x — )}

@ X is now a vector
e /i is the mean vector
e X is the co-variance matrix



Properties of Normal Distribution

@ All marginals of a Gaussian are again Gaussian
@ Any conditional of a Gaussian is Gaussian
@ The product of two Gaussians is again Gaussian

@ Even the sum of two independent Gaussian RVs is a Gaussian

Note: Many of the standard distributions belong to the family of
exponential distributions

@ Bernoulli, binomial/multinomial, Poisson, Normal (Gaussian),
beta/Dirichlet ...

@ Share many important properties - e.g. They have a
conjugate prior. (We will discuss this in next lecture)



Central Limit Theorem

If X1,X5,.., Xm is a sequence of i.i.d. random variables each having
mean 4 and variance o
Then for large m, X1 + X5 4+ .. + X,,, is approximately normally

distributed with mean my and variance mo?

If X ~ N(u,o?)
(x—p)2
Then P[x] = J\Z}Ze 252&

It can be shown by CLT

X1+ Xo+..4+Xn—n
ALt o o N(0,1)

~ 2
@ Sample Mean: i ~ N(u, %)



