
Tutorial 10 Solutions

Sunday 13th November, 2016

1 Gaussian Discriminant Analysis

1.1 Quadratic separating surface

• Consider the following Gaussian Discriminant Classifier discussed in class. Let us say
we have K classes with a multivariate Gaussian Model N (µi,Σi) fitted for each class:

P (φ(x)|C1) = N (µ1,Σ1)

P (φ(x)|Ci) = N (µi,Σi)

P (φ(x)|CK) = N (µK ,Σi)

• Assumption: φ(x) is generated using exactly one N (µi,Σi)

• In the case of K = 2, with P (C1) and P (C2) known, separating surface will be {φ(x) |
P (C1|φ(x)) = P (C2|φ(x))}.

Prove that the separating surface will be quadratic.
ANSWER:

• If φ(x) ∼ N (µi,Σi) (where φ(x) ∈ �m) then

p(φ(x) | Ci) =
1

(2π)
m
2 |Σi|

1
2

exp
−(φ(x)− µi)TΣ−1

i (φ(x)− µi)
2

• So, the separating surface is φ(x) such that {φ(x) | P (C1|φ(x)) = P (C2|φ(x))} ⇐⇒
{φ(x) | P (φ(x) | C1)P (C1) = P (φ(x) | C2)P (C2)} ⇐⇒ after taking logs, φ(x) such
that

−(φ(x)− µ1)TΣ−1
1 (φ(x)− µ1) + (φ(x)− µ2)TΣ−1

2 (φ(x)− µ2) = b
where b contains terms independent of φ(x).

• This is indeed a QUADRATIC equation!
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1.2 Linear Discriminant Analysis

• Now consider the following variant of the above Gaussian Discriminant Classifier. Let
us say we have K classes with a multivariate Gaussian Model N (µi,Σ) fitted for each
class. That is, the covariance matrix Σ is now shared across the classes:

P (φ(x)|C1) = N (µ1,Σ)

P (φ(x)|Ci) = N (µi,Σ)

P (φ(x)|CK) = N (µK ,Σ)

• Assumption: φ(x) is generated using exactly one N (µi,Σ).

• As before, in the case of K = 2, with P (C1) and P (C2) known, separating surface will
be {φ(x) | P (C1|φ(x)) = P (C2|φ(x))}.

1. Q: Prove that the separating surface will now be linear.

Answer:

• If φ(x) ∼ N (µi,Σ) (where φ(x) ∈ �m) then

p(φ(x) | Ci) =
1

(2π)
m
2 |Σ| 12

exp
−(φ(x)− µi)TΣ−1(φ(x)− µi)

2

• So, the separating surface is φ(x) such that {φ(x) | P (C1|φ(x)) = P (C2|φ(x))}
⇐⇒ {φ(x) | P (φ(x) | C1)P (C1) = P (φ(x) | C2)P (C2)} ⇐⇒ after taking logs,
φ(x) such that

−(φ(x)− µ1)TΣ−1(φ(x)− µ1) + (φ(x)− µ2)TΣ−1(φ(x)− µ2) = b

where b contains terms independent of φ(x)
⇐⇒ ...the above expression can actually be simplified by canceling out he terms
involving φT (x)Σ−1φ(x)

−φT (x)Σ−1φ(x) . . .− φT (x)Σ−1φ(x) = b

to finally give

2φT (x)Σ−1µ1 + 2φT (x)Σ−1µ2 − µT1 (x)Σ−1µ1 − µT2 (x)Σ−1µ2 = b

that is,
2φT (x)Σ−1µ1 + 2φT (x)Σ−1µ2 − µT1 (x)Σ−1µ1 = b

�

which is a LINEAR equation! Here, b� = µT1 (x)Σ
−1µ1 + µ

T
2 (x)Σ

−1µ2 + b is
independent of φ(x).
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2. Q: What will be the maximum likelihood estimates for µi and Σ in this new case of
different means but shared covariance matrix?

ANSWER: The Maximum Likelihood estimate for µ̂i will be the same as that for the
Quadratic Discriminant Analysis, but that for a shared and single covariance estimate
Σ̂ will correspond to the average of covariance matrix estimates across examples from
all the classes

µ̂i =
1

ni

ni�

j=1

φ(xij)

Σ̂ =
1

n

K�

i=1

ni�

j=1

(φ(xji )− µi)(φ(xji )− µi)T

2 EM Algorithm for Mixture of Gaussians

Q: Show that the following algorithm for estimating the mean µi, the covariance matrix Σi

and mixture components πi for a mixture of Gaussians is an instance of the general EM
algorithm
ANSWER: Has been discussed in Lecture 27.
Initialize µ

(0)
i to different random values and Σ

(0)
i to I. Now iterate between the following

E Step and M Steps:
E Step:

1. For the posterior p(zi | φ(xj), µ,Σ)

p(t+1)(zi | φ(xj), θ) =
πiN

�
φ(x);µ

(t)
i ,Σ

(t)
i

�

K�

l=1

πlN
�
φ(x);µ

(t)
l ,Σ

(t)
l

�

M Steps:

1. For the prior πi

π
(t+1)
i =

1

n

n�

j=1

p(t+1)(zi | φ(xj), θ)

2. For µi

µ
(t+1)
i =

n�

j=1

p(t+1)(zi | φ(xj), θ)φ(xj)

n�

j=1

p(t+1)(zi | φ(xj), θ)
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3. For Σi

Σ
(t+1)
i =

n�

j=1

p(t+1)(zi | φ(xj), θ)
�
φ(xj)− µ

(t+1)
i

��
φ(xj)− µ

(t+1)
i

�T

n�

j=1

p(t+1)(zi | φ(xj), θ)

Q: Note that this algorithm is for the Mixture of Gaussians assuming a difference co-
variance matrix Σi for each class Ci. What will be the algorithm like, if we assume a shared
covariance matrix Σ across all classes (that is, the Linear Discriminant Analysis discussed
in Section 1.2)?
ANSWER: We will simply build on the solution to the Linear Discriminant case from

Section 2.1 and simply replace multiple class-specific estimates Σi with a single estimate Σ:

3 Convergence of Hard K-Means Algorithm

Prove the following claim: The K-Means Clustering algorithm will converge in a finite number
of iterations.

1. Proof Sketch: At each iteration, the K-Means algorithm reduces the objective�m
j=1

�K
l=1 Pl,j�φ

�
x(j)

�
− µl�2 and stops when this objective does not reduce any fur-

ther.

2. Hint1: P (t+1) = argmin
P

m�

j=1

K�

l=1

Pl,j�φ
�
x(j)

�
− µ(t)l �2

3. Hint2: µ(t+1) = argmin
µ

m�

j=1

K�

l=1

P
(t+1)
l,j �φ

�
x(j)

�
− µl�2

4. Hint3: Only a finite number of combinations of Pi,j are possible.

4 (Optional) Bayesian Inference from Multinomial to

Naive Bayes

First we summarize the conjugate prior, MLE and Bayesian estimation for Multi-
nomial

• In the case of the Multinomial distribution (extension to the binomial distribution) a
variable X could assume one of t possible values V1, V2 . . . Vt with parameters Pr(X =
Vj) = µj. Each observationXk (for k ∈ [1, n]) is modeled as a vectorXk = [Xk,1 . . . Xk,j . . . Xk,t]
with Xk,j = 1 if and only if value of Xk was observed to be Vj and Xk,j = 0 otherwise.
Eg: In the case of the toss of dice, t = 6.

4



• The maximum likelihood estimate for the mean is given by:

µ̂j =

�n
k=1Xk,j

n
=
nj
n

(1)

where, given n iid observations of a multinomial random variable X, nj =
�n

k=1Xk,j

is the number of times X = Vj was observed,

• Conjugate prior follows Dir(α1 . . . αn)

• Posterior is Dir(. . . αl +
�n

k=1Xk,j . . .)

• The expectation of µ under Dir(α1 . . . αn) is given by:

E [µ]Dir(α1...αn)
=

�
α1�
αl

. . .
α1�
αl

�
(2)

• The (posterior) expectation of µ under Dir(. . . αj +
�n

k=1Xk,j . . .) is given by:

E [µ]Dir(...αj+
�n

k=1 Xk,j ...)
=

�
α1 +

�
kXk,1�

αl + n
. . .
αj +

�
kXk,j�

αl + n
. . .

�
(3)

Now recall that we extended single Multinomial to Multinomial Naive Bayes
that has class conditioned independent features, each of which is Multinomial.
We also discussed Maximum Likelihood estimation of Multinomial Naive Bayes.
All of that is summarized below:

• < Xk, Ci >: Tuple with example Xk belonging to class Ci. Pr(Ci) is prior probability
of class Ci.

• φ1(Xk), . . . , φm(xk): The feature vector for Xk

• P (φq(x)|Ci) ∼ Mult(µq1,i . . . µ
q
tq ,i
); that is, each feature φq follows multinomial distri-

bution Bayes

1. [V 1
1 . . . V

1
t1
] . . . [V q

1 . . . V
q
tq ] . . . [V

m
1 . . . V

m
tm ]: Set of values that could be taken by each

of φ1, φ2 . . . φm respectively

2. [µ11,i . . . µ
1
t1,i
] . . . [µq1,i . . . µ

q
tq ,i
] . . . [µm1,i . . . µ

m
tm,i]: Parameters for each of φ1, φ2 . . . φm

respectively for class Ci

• P (φ1(x) . . . φm(x)|Ci) =
m�

q=1

P (φq(x)|Ci): Feature are independent given the class

• Maximum Likelihood Estimate for Naive Bayes: Let

#Ci = No. of times c(Xk) = Ci across all k’s in the dataset

nqj,i = No. of times φq(Xk) = Vj and c(Xk) = Ci across all the k’s

nqj,i =
�

k

δ
�
φq(Xk), V

q
j

�
δ
�
c(Xki), Ci

�
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then

µ̂qj,i =
nqj,i�n

j�=1 n
q

j� ,i

�Prci =
#Ci�
i� #Ci�

Q: Extend Bayesian Inference using the Dirichlet prior from Multinomial to
Naive Bayes
ANSWER: The setting for Naive Bayes with Dirichlet prior on Multivariate Bernoulli

distribution is as follows

• For each data point Xk which belongs to class Ci there are a set of m features given
by φ1(Xk) . . . φq(Xk) . . . φm(Xk)|Ci

• Each parameter (vector) µqi = [µq1,i . . . µ
q
j,i . . . µ

q
tq ,i
] corresponding to a feature φq(.) has

a probability distribution given by
p(µ1i ) ∼ Dir(a11,i . . . a1j,i . . . a1t1,i) . . .
p(µqi ) ∼ Dir(aq1,i . . . aqj,i . . . aqtq ,i) . . .
p(µmi ) ∼ Dir(am1,i . . . amj,i . . . amtm,i)
where aqj,i are the multivariate dirichlet prior parameters

• Let nqj,i be the number of times attribute φq(.) was observed with value V q
j amongst

examples belonging to class Ci.

• Then, from our previous analysis of Bayesian estimation for Multinomial1,
p(µ1i | D) ∼ Dir(a11,i + n11,i . . . a1j,i + n1j,i . . . a1t1,i + n1t1,i) . . .
p(µqi | D) ∼ Dir(aq1,i + nq1,i . . . aqj,i + nqj,i . . . aqtq ,i + n

q
tq ,i
) . . .

p(µmi | D) ∼ Dir(am1,i + nm1,i . . . amj,i + nmj,i . . . amtm,i + n
m
tm,i).

1See page 12 of http://23.253.82.180/course/307/865/2238.
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