
Tutorial 2

Monday 8th August, 2016

Problem 1. Case for non-IID dataset:
In the class, we discussed the case of Bayesian estimation for a univariate Gaussian from

dataset D that consisted of IID (independent and identically distributed) observations.

• Let Pr(X) ∼ N (µ, σ2) and let the data D = x1...xm be IID. Let σ2 be known.

• µMLE = 1
m

m�

i=1

xi and σMLE = 1
m

m�

i=1

(xi − µ)2

• The conjugate prior is Pr(µ) = N (µ0, σ
2
0), And the posterior is: Pr(µ|x1...xm) =

N (µm, σ
2
m) such that

• µm = (
σ2

mσ2
0 + σ2

µ0) + (
mσ2

0

mσ2
0 + σ2

µ̂ML) and
1

σ2
m

=
1

σ2
0

+
m

σ2

Prove the above
Answer: We have already done this in the class: https://www.cse.iitb.ac.in/

~cs725/notes/lecture-slides/lecture-06-unannotated.pdf).
Now suppose, the examples x1...xm in the dataset D were not necessarily independent

and whose possible dependence was expressed by known covariance matrix Ω but with a
common unknown (to be estimated) mean µ ∈ �. Let u = [1, 1, . . . 1] a m−dimensional
vector of 1’s and x = [x1...xm] and

Pr(x1...xm;µ,Ω) =
1

(2π)
m
2 |Ω| 12

e−
1
2
(x−µu)TΩ−1(x−µu)

Assume that Ω ∈ �m×m is positive-definite. Now answer the following questions

1. What would be the maximum likelihood estimate for µ?

Answer: This would correspond to MLE estimate for a multivariate Gaussian but
with a single data point. Additionally, the restriction is that the mean vector is of the
form µu:

We have already seen that maximizing a monotonically increasing transformation of
the objective should yield the same point of optimality (and proved the same in this
tutorial). So taking logs of the likelihood gives us the log likelihood above:
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µMLE = argmax
µ

− 1

2
(x− µu)TΩ−1(x− µu)

Setting the derivative with respect to µ to 0:

d

dµ

�
−1

2
(xTΩ−1x− 2µxTΩ−1u+ µ2uTΩ−1u)

�
=

�
xTΩ−1u− µuTΩ−1u

�
= 0

⇒ µMLE = xTΩ−1u
uTΩ−1u

2. How would you go about doing Bayesian estimation for µ?

3. What will be an appropriate conjugate prior?

4. What will the posterior be? And what will be the MAP and Bayes estimates?

Answers to 2, 3 and 4: As hinted in the class, we will expect the conjugate prior of
mean µ of the (product of) Gaussian to be Gaussian. Let µ ∼ N (µ0, σ

2
0) with a fixed

and known σ2
0.

N (µm, σ
2
m) = exp

�
−1
2σ2

m
(µ− µm)2

�
= Pr(µ|D) ∝ Pr(D|µ) Pr(µ) =

1

(2π)
m
2 |Ω| 12

1√
2πσ2

0

exp

�
−1

2
(x− µu)TΩ−1(x− µu) − (µ− µ0)

2

2σ2
0

�
∝ exp

�
−1

2
(x− µu)TΩ−1(x− µu) − (

Our reference equality is:

exp

�
−1

2
(xTΩ−1x− 2µxTΩ−1u+ µ2uTΩ−1u) − (µ− µ0)

2

2σ2
0

�
= exp

� −1

2σ2
m

(µ− µm)2
�

Matching coefficients of µ2, we get

−µ2

2σ2
m

= −1
2
µ2uTΩ−1u+ −µ2

2σ2
0
⇒ 1

σ2
m

=
1

σ2
0

+ uTΩ−1u

Matching coefficients of µ, we get

2µµm

2σ2
m

= µ
�
xTΩ−1u+ 2µ0

2σ2
0

�
⇒ µm = σ2

m

�
xTΩ−1u+ µ0

σ2
0

�
⇒ 1

1+σ2
0u

TΩ−1u

�
σ2
0x

TΩ−1u+ µ0

�

µm will be the MAP estimate of µ.

HOMEWORK: What about the special cases of Ω being diagonal matrices
with the same or different values along the diagonal?

Problem 2. We discussed atleast two settings where maximizing a monotonically increasing
function of the objective is somewhat more intuitive than maximizing the original objective.
Recall the two settings. Now prove that maximizing the monotonically increasing trans-
formation of the objective gives the same optimality point as does maximizing the original
objective.
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Answer: We will prove by contradiction. Let O(θ) be the objective function being
maximized. Let θ∗ = argmax

θ
O(θ). Let f(β) be a monotonically increasing function. Let

θ̂ = argmax
θ

f(O(θ)) such that θ̂ �= θ∗ and f(O(θ̂)) > f(O(θ∗)). Since f is a monotonically

increasing function of its arguments, it must be that O(θ̂) > O(θ∗). Which is a contradiction,
since we had θ∗ = argmax

θ
O(θ). Thus either, it must be that θ̂ = θ∗ OR f(O(θ̂)) = f(O(θ∗)).
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