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Problem 1. Case for non-IID dataset:
In the class, we discussed the case of Bayesian estimation for a univariate Gaussian from

dataset D that consisted of IID (independent and identically distributed) observations.

• Let Pr(X) ∼ N (µ, σ2) and let the data D = x1...xm be IID. Let σ2 be known.
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Prove the above. Now suppose, the examples x1...xm in the dataset D were not necessarily
independent and whose possible dependence was expressed by known covariance matrix
Ω but with a common unknown (to be estimated) mean µ ∈ <. Let u = [1, 1, . . . 1] a
m−dimensional vector of 1’s and x = [x1...xm] and
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Assume that Ω ∈ <m×m is positive-definite. Now answer the following questions

1. What would be the maximum likelihood estimate for µ?

2. How would you go about doing Bayesian estimation for µ?

3. What will be an appropriate conjugate prior?

4. What will the posterior be? And what will be the MAP and Bayes estimates?

Problem 2. We discussed atleast two settings where maximizing a monotonically increasing
function of the objective is somewhat more intuitive than maximizing the original objective.
Recall the two settings. Now prove that maximizing the monotonically increasing trans-
formation of the objective gives the same optimality point as does maximizing the original
objective.
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