Tutorials 3 and 4

Monday 22" August, 2016

Problem 1. Equivalence between Ridge Regression and Bayesian Linear Regres-
sion (with fixed o2 and \):
Consider the Bayesian Linear Regression Model

y=w p(x)+¢eand e~ N0, 0%
w~ N(0,al) and w | D ~ N (tm, X))
= (AT + ¢T9) Loy and ;1 = M + 67 ¢/

Show that wy4p = argmax Pr(w | D) is the same as that of Regularized Ridge Regression.
WRidge = argmin H¢W - yH% + )\O.QHWHS

In other words, The Bayes and MAP estimates for Linear Regression coincide with that of
Regularized Ridge Regression.

Solution Sketch: Taking the negative log of the log likelihood we see that maximizing
the log of the posterior distribution is equivalent to minimizing the ridge regression objective.
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and after expanding and canceling out redundant terms, and later, after completing squares:
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Problem 2. Ridge Regression and Error Minimization:

1. Prove the following Claim:
The sum of squares error on training data using the weights obtained after minimizing
ridge regression objective is greater than or equal to the sum of squares error on
training data using the weights obtained after minimizing the ordinary least squares
(OLS) objective.

More specifically, if ¢ and y are defined on the training set D = {(x1, y1)-.-(Xm, Ym) }
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then you should prove that
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Also, one can reformulate
W Ridge = argvinin low — yl[5 + Allwl[3
as
WRidge = argvlz’nin ||pw — v |§

such that ||w]||3 < 0
for some 6 corresponding to a value of X\. The solution to a constrained minimization
problem will always be greater than or equal to its unconstrained counterpart.
2. If it is the case that ridge regression leads to greater error than ordinary least squares
regression, then why should one be interested in ridge regression at all?

Answer: This is still acceptable since ridge regression incorporates prior (as per
Bayesian interpretation). The idea is ultimately to do well on unseen (test) data
as well. Therefore, high training error might be acceptable if test error can be lowered.

Problem 3. Gradient descent is a very helpful algorithm. But it is not guaranteed to

converge to global minima always. Give an example of a continuous function and initial

. . . D .. hal )
point for which gradient descent converges to a value which is not global minima? w\ T
Problem 4. Step Length Considerations & \

1. Consider the function "w\s

This function has a minimum at x = (5,3). Suppose you are at a point (4, —4)7 after
few iterations, using the exact line search algorithm discussed in the class, find the
point for the next iteration.
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2. Now consider solving the Least Squares Linear Regression problem using the gradient
descent algorithm. And let us say w(®) = 0 and that the step length t*) is computed
using exact line search for each value of k. In how many steps will the gradient descent

algorithm converge? What would be your answer if we had a different initialization for
()9
w7

Solution:

t*) = argmin (W(k) + 2t (¢Ty — pTpw — )\w(k))) (3)
t

Problem 5. Suppose you are solving the equation Ax = b using gradient descent on least
squares solution. How do you think the Eigenvalues of the matrix affect the convergence?
(Hint: Consider a 2x2 diagonal matrix for A what do you observe?)

[Source : Quoral

SOIuthl’l https://www.quora.com/Why-is-the-Speed-0f-Convergence-of-gradient-descent-depends-on-the-maximal-and-minimal-eigenvalues-of-A-in-solving-AX-b-t

Look at the countours of the objective |[Ax —b |2. The larger is the ratio )‘m‘_“”((A) the more

skewed are the level curves and more is the time gradient descent will take for convergence.
Thus, the matrix A with small value of )‘m”((ﬁ)) is always desirable.

In general, by the Courant-Fischer mmmﬁllax Theorem, if A and B are two n xn symmetric
matrices, and suppose the k™" largest eigenvalue of matrix X is \y(X), k =1,2,,n: A\ (X) >
Ao(X) ... > Ap(X) then

Me(A) + A\ (B) < M(A+ B) < M(A) + M (B)
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