
Tutorial 5

Thursday 1st September, 2016

Problem 1. Relation between Penalized Ridge Regression (λ) and Constrained
Ridge Regression (θ):

Show that the solution to the Constrained Ridge Regression problem

wCon = argmin
w

||φw − y||22

such that ||w||22 ≤ ξ
is the same as that to the solution to Penalized Ridge Regression.

wPen = argmin
w

||φw − y||22 + λ||w||22

for some λ that is a function of ξ.
Hint: You can make convexity assumptions and use KKT conditions.
Solution Sketch:
‘Regularized’ Linear Regression

• Consider the formulation in which we limit the weights of the coefficients by putting a
constraint on size of the L2 norm of the weight vector:

argminw(Φw − y)T (Φw − y)

‖w‖22 ≤ ξ

• The objective function, namely f(w) = (Φw − y)T(Φw − y) is strictly convex. The
constraint function, g(w) = ‖w‖22 − ξ, is also convex.

• For convex g(w), the set {w|g(w) ≤ 0}, is also convex. (Why?)

• To minimize the error function subject to constraint |w| ≤ ξ, we apply KKT conditions
at the point of optimality w∗

∇w∗(f(w) + λg(w)) = 0

(the first KKT condition). Here, f (w) = (Φw − y)T (Φw − y) and, g(w) = ‖w‖2 − ξ.
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• Solving we get,
w∗ = (ΦTΦ + λI)−1ΦTy

From the second KKT condition we get,

‖w∗‖2 ≤ ξ

From the third KKT condition,
λ ≥ 0

From the fourth condition
λ‖w∗‖2 = λξ

• Values of w and λ that satisfy all these equations would yield an optimal solution.
That is, if

‖w∗‖ = ‖(ΦTΦ)−1ΦTy‖ ≤ ξ

then λ = 0 is the solution. Else, for some sufficiently large value, λ will be the solution
to

‖w∗‖ = ‖(ΦTΦ + λI)−1ΦTy‖ = ξ

• Bound on λ in the regularized least square solution: Consider,

(ΦTΦ + λI)−1ΦTy = w∗

We multiply (ΦTΦ + λI) on both sides and obtain,

‖(ΦTΦ)w∗ + (λI)w∗‖ = ‖ΦTy‖

Using the triangle inequality we obtain,

‖(ΦTΦ)w∗‖+ (λ)‖w∗‖ ≥ ‖(ΦTΦ)w∗ + (λI)w∗‖ = ‖ΦTy‖

• By the Cauchy Shwarz inequality, ‖(ΦTΦ)w∗‖ ≤ α‖w∗‖ for some α = ‖(ΦTΦ)‖. Sub-
stituting in the previous equation,

(α + λ)‖w∗‖ ≥ ‖ΦTy‖

i.e.

λ ≥ ‖Φ
Ty‖
‖w∗‖

− α

Note that when ‖w∗‖ → 0, λ→∞. (Any intuition?) Using ‖w∗‖2 ≤ ξ we get,

λ ≥ ‖Φ
Ty‖√
ξ
− α

. You can consult solution to Problem 5 of Tutorials 3 and 4 for the intuition1.

1https://www.cse.iitb.ac.in/~cs725/notes/lecture-slides/tut3-solutions.pdf
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• This is not the exact solution to λ but the bound proves the existence of λ for some ξ
and φ.

The Resultant alternative objective function Substituting g(w) = ‖w‖2−ξ, in the
first KKT equation considered earlier:

∇w∗(f(w) + λ · (‖w‖2 − ξ)) = 0

This is equivalent to solving

min(‖ Φw − y ‖2 +λ ‖ w ‖2)

for the same choice of λ. This form of regularized ridge regression is the penalized ridge
regression.

Problem 2. Consider a data set in which each data point yi is associated with a weighting
factor ri, so that the sum-square error function becomes

1

2

m∑
i=1

ri(yi − wTφ(xi))
2

Find an expression for the solution w∗ that minimizes this error function. The weights
ri’s are known before hand. (Exercise 3.3 of Pattern Recognition and Machine Learning,
Christopher Bishop).

Solution: Refer to the solution to problem 3, part 1. The solution to problem 2 is
included therein.

Problem 3. In problem 2, we discussed weighted regression. In this problem, we will
deal with weighted regression, with the weights obtained using some kernel K(., .). Given
a training set of points D = {(x1, y1), . . . , (xi, yi), . . . , (xn, yn)}, we predict a regression
function f(x′) = (w>φ(x′) + b) for each test (or query point) x′ as follows:

(w′, b′) = argmin
w,b

n∑
i=1

K(x′, xi)
(
yi − (w>φ(xi) + b)

)2
1. If there is a closed form expression for (w′, b′) and therefore for f(x′) in terms of the

known quantities, derive it.

2. How does this model compare with linear regression and k−nearest neighbor regres-
sion? What are the relative advantages and disadvantages of this model?

3. In the one dimensional case (that is when φ(x) ∈ <), graphically try and interpret
what this regression model would look like, say when K(., .) is the linear kernel2.

Solution:
This problem is directly related to problem 2 and herein we present the solution to both

the problems

2Hint: What would the regression function look like at each training data point?
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1. The weighing factor rx
′
i of each training data point (xi, yi) is now also a function of the

query or test data point (x′, ?), so that we write it as rx
′
i = K(x′,xi) for i = 1, . . . ,m.

Let rx
′
m+1 = 1 and let R be an (m+ 1)× (m+ 1) diagonal matrix of rx

′
1 , r

x′
2 , . . . , r

x′
m+1.

R =


rx
′

1 0 ... 0
0 rx

′
2 ... 0

... ... ... ... 1
0 0 0 ... rx

′
m+1


Further, let

Φ =

φ1(x1) ... φp(x1) 1
... ... ... 1

φ1(xm) ... φp(xm) 1


and

ŵ =


w1

...
wp
b


and

y =

y1...
ym


The sum-square error function then becomes

1

2

m∑
i=1

ri(yi − (ŵTφ(xi) + b))2 =
1

2
||
√
Ry −

√
RΦŵ||22

where
√
R is a diagonal matrix such that each diagonal element of

√
R is the square root

of the corresponding element of R. This is a convex function being minimized (prove
this using techniques similar to what we employed for least squares linear regression)
and therefore has a global minimum at ŵx′

∗ where the gradient must become 0. (again
work out the steps using techniques similar to what we employed for least squares linear
regression). The expression for the solution ŵ∗ that minimizes this error function is
therefore

ŵx′

∗ = (ΦTRΦ)−1ΦTRy

2. Let us refer to this model as local linear regression (Section 6.1.1 of Tibshi’s book).

As compared to linear regression, local linear regression gives more importance to
points in D that are closer/similar to x′ and less importance to points that are less
similar. Thus, this method can be important if the regression curve is supposed to take
different shapes or different parameters in different parts of the space. For example,
in two different regions, the ideal regression curve might be linear in each but with
different parameters. In this sense, local linear regression comes close to k-nearest
neighbor. But unlike k-nearest neighbor, local linear regression gives you a smooth
solution since contribution for regression at a point comes from all data points (in
proportion to their closeness) and not just the k closest points.
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3. Taking clue from the discussion above, one can try and plot this regression curve.

Problem 4. Put together the entire story of Support Vector Regression (SVR) one place.
You can structure your story along the following lines

1. The motivation behind the basic formualation(s) of SVR with justification for each
component of the objective and constraints.

2. The Langrangian function and KKT conditions.

3. Solutions to the KKT conditions and the concept of Support Vectors.

4. The Dual Optimization problem for SVR and the Kernel function

5. Valid kernel functions.

Problem 5. Optional, but could help in ML Project:
For each of the following functions, determine whether a local minimum (maximum) will

correspond to a global minimum (maximum). You do not have to prove anything rigorously.
You just need to understand the intuitive reason and can consult any web or textual resources.

1. f(x) = ex − 1 on R.

2. f(x1, x2) = x1x2 on R2
++.

3. f(x1, x2) = 1/(x1x2) on R2
++.

4. f(x1, x2) = x1/x2 on R2
++.
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5. f(x1, x2) = x21/x2 on R× R++.

6. f(x1, x2) = xα1x
1−α
2 ), where 0 ≤ α ≤ 1, on R2

++.

7. Suppose p ≥ 1 and

f(x) =

(
n∑
i=1

xPi

)1/p

with domain dom f = Rn
++ What if p < 1, p 6= 0?
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