
CS725: Tutorial 6

1 Detecting spam mails

One of the fundamental tasks of machine learning is to detect spam e-mails.
You are given some words and a label of +1 if it is spam or -1 if it is not. Here 1
indicates the presence1 of word and 0 the absence of word. Assume the learning
rate η is 1

2 . Find the seperating hyperplane using perceptron training algorithm

area click your in singles y
a 1 1 0 1 1 +1
b 0 0 1 1 0 -1
c 0 1 1 0 0 +1
d 1 0 0 1 0 -1
e 1 0 1 0 1 +1
f 1 0 1 1 0 -1

Solution: Since this is a programming exercise. I would like you to share
and discuss solutions to this and evaluate others based on your personal solu-
tions.

One possible solution
wclick = 1, win = −1, wsingles = 1

2 Computing power of perceptrons

Perceptrons can only seperate Linearly seperable data as discussed in class.
Given n variables we can have 22n

boolean functions, but not all of these can
be represented by a perceptron. For example when n=2 the XOR and XNOR
cannot be represented by a perceptron. Given n boolean variables how many of
22n

boolean functions can be represented by a perceptron?
Solution: http://unbc.arcabc.ca/islandora/object/unbc\%3A6871/datastream/

PDF/view

1https://preview.overleaf.com/public/vgbycngdqhgc/images/

a9c18fe31ba566c1dc8ecd306bd0463d880f856b.jpeg
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3 Kernel Perceptron

Recall the proof for convergence of the perceptron update algorithm. Now can
this proof be extended to the kernel perceptron?

Recall that Kernelized perceptron2 is specified as:

f(x) = sign

(∑
i

α∗i yiK(x, xi) + b∗

)
The perceptron update algorithm for the Kernelized version is:

• INITIALIZE: α=zeroes()

• REPEAT: for < xi, yi >

– If sign
(∑

j αjyjK(xj , xj) + b
)
6= yi

– then, αj = αj + 1

– endif

Solution: Yes, in fact kernel perceptron can be derived from the perceptron
update rule as follows:

f(x) = sign
(
(w∗)Tφ(x)

)
= sign

(∑
i

α∗i yiK(x, xi) + b∗

)

• INITIALIZE: w = [0, 0, . . . , 0, 1]⇒ f(x) = sign
(
(w)Tφ(x)

)
= sign

(∑
i

αiyiK(x, xi) + b

)
with αi = 0 and b = 1

Note: φT (x̂)φ(x)ŷ = ŷK(x̂, x) + ŷ

• REPEAT: for each < x̂, ŷ >

– If ŷwTφ(x̂) < 0

⇒ f(x̂) = sign
(
(w)Tφ(x̂)

)
= sign

(∑
i

αiyiK(x̂, xi) + b

)
6= ŷ

– then, w′ = w + Φ(x̂).ŷ

⇒ f(x) = sign
(
(w′)Tφ(x)

)
= sign

(∑
i

(αiyiK(x, xi) + φT (x̂)φ(x)ŷ) + b

)

= sign

(∑
i

α′iyiK(x, xi) + b′

)
where α′i = αi for all i except that

α′
x̂

= α
x̂

+ 1 and b′ = b+ ŷ

– endif

Thus, f(x) = sign
(
(w∗)Tφ(x)

)
= sign

( ∗∑
i

αiyiK(x, xi)

)
2In the original tutorial problem, b was missing. Re-introducing b helps state the equiva-

lence of kernel perceptron to regular perceptron more easily.
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4 Number of iterations for convergence of per-
ceptron update

Prove the following:
If ||w∗|| = 1 and if there exists θ > 0 such that for all i = 1, . . . , n,

yi(w
∗)Tφ(xi) ≥ θ and ||φ(wi)||2 ≤ Γ2 then the perceptron algorithm will make

atmost Γ2

θ2 errors (that is take atmost Γ2

θ2 iterations to converge)
Solution:
We know that ||w∗||22 = 1 and yiφ(xi)w

∗ ≥ θ for all i. We assume that
w(0) = 0

Now consider (w∗)Tw(k) = (w∗)T (w(k−1) + yiφ(xi)) = (w∗)Tw(k−1) +
yi(w

∗)Tφ(xi) ≥ (w∗)Tw(k−1) + θ ≥ (w∗)Tw(k−2) + 2θ ≥ (w∗)Tw(0) + kθ = kθ
Thus,

(w∗)Tw(k) ≥ kθ

and because
||w∗||||w(k)|| = ||w(k)|| ≥ |(w∗)Tw(k)|

we must have
||w(k)|| ≥ kθ

Similarly,
||w(k)||22 = ||w(k−1)+yiφ(xi)||22 = ||w(k−1)||22+y2

i ||φ(xi)||22+2yi(w
(k−1))Tφ(xi) <

||w(k−1)||22 + Γ2 < ||w(k−2)||22 + 2Γ2 < ||w(0)||22 + kΓ2 = kΓ2

since y2
i = 1 and it must have been that (as per perceptron update rule)

yi(w
(k−1))Tφ(xi) < 0

Thus,

||w(k)||22 < kΓ2

and

||w(k)||22 ≥ k2θ2

which implies
k2θ2 < kΓ

that is,

k <
Γ

θ2

which proves our claim.
http://www.cs.columbia.edu/~mcollins/courses/6998-2012/notes/perc.

converge.pdf
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