
Tutorial 7

Monday 17th October, 2016

Problem 1. Design a multilayer perceptron which will learn to recognize various forms of
the the letters C,L,T placed on a 3x3 grid through backpropagation algorithm.

1. Design a one layer network indicating what should be applied at the input layer and
what should be expected at the output layer showing the number of neurons, the
connections between them and the neurons output function.

2. repeat (a) for two layer network by adding a hidden layer

Solution: See Problem 5 of http://www.eee.metu.edu.tr/~halici/courses/543LectureNotes/
questions/qch6/index.html for the solution.

Problem 2. Consider a perceptron for which u ∈ R2 and

f(a) =




1 a > 0
0 a = 0
−1 a < 0

1

Let the desired output be 1 when elements of class A = {(1,2),(2,4),(3,3),(4,4)} is applied
as input and let it be -1 for the class B = {(0,0),(2,3),(3,0),(4,2)}. Let the initial connection
weights w0(0) = +1, w1(0) = −2, w2(0) = +1 and learning rate be h = 0.5.

This perceptron is to be trained by perceptron convergence procedure, for which the
weight update formula is w(t+ 1) = w(t) + η(yk − xk(t))uk

1. (a) Mark the elements belonging to class A with x and those belonging to class B
with o on input space.

(b) Draw the line represented by the perceptron considering the initial connection
weights w(0).

(c) Find out the regions for which the perceptron output is +1 and 1

(d) Which elements of A and B are correctly classified, which elements are misclassi-
fied and which are unclassified?

2. If u=(4,4) is applied at input, what will be w(1) ?

3. Repeat a) considering w(1).

4. If u=(4.2) is then applied at input, what will be w(2)?

5. Repeat 1) considering w(2).

6. Do you expect the perceptron convergence procedure to terminate? Why?

2

Solution: See Problem 8 of http://www.eee.metu.edu.tr/~halici/courses/543LectureNotes/
questions/qch6/index.html for the solution.

Problem 3. Recall the Regularized (Logistic) Cross-Entropy Loss function (minimized wrt
w ∈ �p):

E (w) = −
�
1

m

m�

i=1

�
y(i) log fw

�
x(i)

�
+

�
1− y(i)

�
log

�
1− fw

�
x(i)

����
+

λ

2m
�w�22 (1)

Now prove that minimizing the following dual kernelized objective1

(minimized wrt α ∈ �m) is equivalent to minimizing the regularized cross-entropy loss func-
tion:

ED (α) =




m�

i=1




m�

j=1

−y(i)K
�
x(i),x(j)

�
αj +

λ

2
αiK

�
x(i),x(j)

�
αj


+ log


1 +

m�

j=1

αjK
�
x(i),x(j)

�



 (2)

where, decision function fw(x) =
1

1+ exp

�
m�

j=1

αjK
�
x,x(j)

�
�

Solution:
We will prove this result and in the process, also motivate (and later prove) the more

general Representer Theorem.

1. Some preliminary steps:

Recall another form of the regularized cross entropy2 equivalent to (1)

E (w) = −
�
1

m

m�

i=1

�
y(i)wTφ(x(i))− log

�
1 + exp

�
wTφ(x(i))

���
�
+

λ

2m
||w||2 (3)

We can verify by setting the derivative of the dual kernelized objective wrt each αi to
0:

− y(i)K
�
x(i),x(i)

�
+






m�

j=1

λK
�
x(i),x(j)

�
αj


+

K
�
x(i),x(i)

�
�
1 +

�m
j=1 αjK

�
x(i),x(j)

��


 (4)

First of all, we will drop the common term 1
m
from the primal optimization problem

and equivalently minimize the unscaled version

E (w) = −
�

m�

i=1

�
y(i) log fw

�
x(i)

�
+
�
1− y(i)

�
log

�
1− fw

�
x(i)

���
�
+

λ

2
�w�22 (5)

∇E (w) =

�
m�

i=1

�
y(i)∇ log fw

�
x(i)

�
+
�
1− y(i)

�
∇ log

�
1− fw

�
x(i)

���
�
+ λw (6)

1http://perso.telecom-paristech.fr/~clemenco/Projets_ENPC_files/

kernel-log-regression-svm-boosting.pdf
2Slide 5 of https://www.cse.iitb.ac.in/~cs725/notes/lecture-slides/lecture-17-annotated.

pdf

3

2. ∇ log fw
�
x(i)

�
= φ(x(i))e−(w)Tφ(x(i))

�
1

1+e−(w)T φ(x(i))

�2

and

∇ log
�
1− fw

�
x(i)

��
= −φ(x(i))

�
1

1+e−(w)T φ(x(i))

�2

3. ⇒
∇E (w) =

�
m�

i=1

�
y(i) − fw

�
x(i)

��
φ(x(i))

�
+ λw (7)

At optimality, a necessary condition is that ∇E (w) = 0 and therefore,

w =
1

λ

�
m�

i=1

�
y(i) − fw

�
x(i)

��
φ(x(i))

�
(8)

4. The main idea:

We first recap the main optimization problem

E (w) = −
�
1

m

m�

i=1

�
y(i)wTφ(x(i))− log

�
1 + exp

�
wTφ(x(i))

���
�
+

λ

2m
||w||2 (9)

and an expression for w at optimality

w =
1

λ

�
m�

i=1

�
y(i) − fw

�
x(i)

��
φ(x(i))

�
(10)

To completely prove this specific case of KLR, let X be the space of examples such
that

�
x(1),x(2), . . . ,x(m)

�
⊆ X and for any x ∈ X , K(.,x) : X → � be a function such

that K(x�,x) = φT (x)φ(x�). Recall that φ(x) ∈ �n and

fw(x) = p(Y = 1|φ(x)) = 1

1 + exp (−wTφ(x))

For the rest of the discussion, we are interested in viewing −wTφ(x) as a function h(x)

fw(x) = p(Y = 1|φ(x)) = 1

1 + exp (h(x))

We will prove that for the optimization problem (9), h(x) can be equivalently expressed
as

�m
j=1 αjK

�
x,x(j)

�
, as a result of which we will obtain the following terms of (2):

�
m�

i=1

�
m�

j=1

−y(i)K
�
x(i),x(j)

�
αj

�
+ log

�
1 +

m�

j=1

αjK
�
x(i),x(j)

�
��

(11)

4

Substituting (10) into λ
2m

||w||2 term of (9) we will get the regularizer into the form

m�

i=1

m�

j=1

λ

2
αiK

�
x(i),x(j)

�
αj

which forms the remaining term of (2)

5. Consider the set of functions K = {K(.,x) | x ∈ X} and letH be the set of all functions
that are finite linear combinations of functions in K. That is, any function h ∈ H can

be written as h(.) =
T�

t=1

αtK(.,xt) for some T and xt ∈ X , αt ∈ �. One can easily

verify that H is a vector space3

Note that, in the special case when f(x�) = K(x�,x) ∈ H, then T = m and

f(x�) = K(x�,x) =
n�

i=1

φi(x
�)K(ei,x)

where ei is such that φ(ei) = ui ∈ �n, the unit vector along the ith direction.

Also, by the same token, if w ∈ �n is in the search space of the regularized cross-
entropy loss function (1), then

φT(x�)w =
n�

i=1

wiK(ei,x)∈ H

Thus, the solution to (1) is an h ∈ H.

6. Inner Product overH: For any g(.) =
S�

t=1

βsK(.,x
�
s) ∈ H and h(.) =

T�

t=1

αtK(.,xt) ∈

H, define the inner product4

�h, g� =
S�

s=1

βs

T�

t=1

αtK(x
�
s,xt) (12)

Further simplifying (12),

�h, g� =
S�

s=1

βs

T�

t=1

αtK(x
�
s,xt) =

S�

s=1

βsf(xs) (13)

One immediately observes that in the special case that g() = K(.,x),

�h,K(.,x)� = h(x) (14)
3Try it yourself. Prove that H is closed under vector addition and (real) scalar multiplication.
4Again, you can verify that �f, g� is indeed an inner product following properties such as symmetry, lin-

earity in the first argument and positive-definiteness: https://en.wikipedia.org/wiki/Inner_product_

space

5

7. Orthogonal Decomposition: Since
�
x(1),x(2), . . . ,x(m)

�
⊆ X andK = {K(.,x) | x ∈ X}

with H being the set of all finite linear combinations of function in K, we also have
that

lin span
�
K(.,x(1)), K(.x(2)), . . . , K(.,x(m))

�
⊆ H

Thus, we can use orthogonal projection to decompose any h ∈ H into a sum of two
functions, one lying in lin span

�
K(.,x(1)), K(.x(2)), . . . , K(.,x(m))

�
, and the other ly-

ing in the orthogonal complement:

h = h� + h⊥ =
m�

i=1

αiK(.,x
(i)) + h⊥ (15)

where �K(.,x(i)), h⊥� = 0, for each i = [1..m].

For a specific training point x(j), substituting from (15) into (14) for any h ∈ H, using
the fact that �K(.,x(i)), h⊥� = 0

h(x(j)) = �
m�

i=1

αiK(.,x
(i))+f⊥, K(.,x(j))� =

m�

i=1

αi�K(.,x(i)), K(.,x(j))� =
m�

i=1

αiK(x
(i),x(j))

(16)
which we observe is independent of h⊥.

8. Analysis of the Regularized Cross-Entropy Logistic Loss:

The Regularized Cross-Entropy Logistic Loss (9), has two parts (after ignoring the
common 1

m
factor), viz., the empirical risk

−
�

m�

i=1

�
y(i)wTφ(x(i))− log

�
1 + exp

�
wTx(i)

���
�

(17)

Since the empirical risk in (17) is only a function of h(x(i)) = wTφ(x(i)) for i = [1..m],
based on (16) we note that the value of the empirical risk in (17) will therefore be
independent of h⊥ and therefore one only needs to equivalently solve the following

empirical risk by substituting from (16) i.e., h(x(j)) =
m�

i=1

αiK(x
(i),x(j)):

�
m�

i=1

�
m�

j=1

−y(i)K
�
x(i),x(j)

�
αj

�
+ log

�
1+

m�

j=1

αjK
�
x(i),x(j)

�
��

9. Safe with Regularizer?

Consider the regularizer function ||w||22 which is a strictly monotonically increasing
function of ||w||. Substituting w = 1

λ

��m
i=1

�
y(i) − fw

�
x(i)

��
φ(x(i))

�
from (8), one

can view Ω(||h||) as a strictly monotonic function of ||h||.

6

Ω(||h||) = Ω
�
||

m�

i=1

αiK(.,x
(i)) + h⊥||

�
= Ω



����||

m�

i=1

αiK(.,x
(i))||2 + ||h⊥||2




and by using triangle inequality,

Ω(||h||) = Ω



����||

m�

i=1

αiK(.,x
(i))||2 + ||h⊥||2


 ≥ Ω



����||

m�

i=1

αiK(.,x
(i))||2




That is, setting h⊥ = 0 does not affect the first term of (9) while strictly decreasing
the second term. That is, any minimizer must have optimal h∗(.) with h⊥ = 0. That
is,

h(x) =
m�

i=1

αiK(x
(i),x)

Problem 4. In the class, we discussed the probabilistic binary (class) logistic regression
classifier. How will you extend logistic regression probabilistic model to multiple (say K)
classes? Are their different ways of extending? What is the intuition behind each? Discuss
and contrast advantages/disadvantages in each.

Solution: One might suggest handling multi-class (K) classification via K one-vs-rest
probabilistic classifiers. But there is no obvious probabilistic semantics associated with such
a classifier (question asked for a probabilistic MODEL for multiple classes).

Basic idea is that each class c can have a different weight vector [wc,1, wc,2, . . . , wc,k, . . . , wc,K]
.

Extension to multi-class logistic

1. Each class c = 1, 2, . . . , K−1 can have a different weight vector [wc,1,wc,2, . . . ,wc,k, . . . ,wc,K−1]
and

p(Y = c|φ(x)) = e−(wc)Tφ(x)

1 +
K−1�

k=1

e−(wk)
Tφ(x)

for c = 1, . . . , K − 1 so that

p(Y = K|φ(x)) = 1

1 +
K−1�

k=1

e−(wk)
Tφ(x)

Alternative (equivalent) extension to multi-class logistic

7

therefore

1. Each class c = 1, 2, . . . , K can have a different weight vector [wc,1,wc,2 . . .wc,p] and

p(Y = c|φ(x)) = e−(wc)Tφ(x)

K�

k=1

e−(wk)
Tφ(x)

for c = 1, . . . , K.

This function is also the called the softmax5 function.

Problem 5. Suppose you are provided a multi-layer neural network for a binary classifi-
cation problem. Can you convert this network into an equivalent kernel perceptron (single
node neural network only)? What will be the exact steps?

Solution:

1. Yes. You are already provided the NN classifier. So you need not worry about sep-
arability etc. In fact, the question was only about an equivalent classifier (even if
not-separating completely) which can be constructed as follows:

2. Let the neural network be as shown below with p nodes (z1, z2, . . . , zp) in the last layer.
You can develop an equivalent kernel preceptron by specifying

φz(x) = [z1(x), z2(x), . . . , zp(x)]

and using the following Kernel:

Kz(x, x
�) = φT

z (x)φz(x
�)

xn

x2

x1

1

z1 = g (
�
)

zp = g (
�
)

wn1

w21

w11

w01

wn2

w22

w12

w02
f = g(.)

inputs

5https://en.wikipedia.org/wiki/Softmax_function

8

