
Tutorial 8

Tuesday 11th October, 2016

Problem 1. In class, we saw the detailed derivation of backpropogation update rules when
each of the activation units is a sigmoid. You need to derive all the update rules when each
activation unit happens to be rectified linear unit (ReLU).

σ(s) = max(θ, s)

(since we often represent σ).) by g(.), this also means g(s) = max(θ, s))
Typically, θ = 0. Note that ReLU is differentiable at all points except at s = θ. But

by using subgradient ∇sσ instead of gradient ∇σ, we can complete backpropagation as
‘subgradient descent’. Note that subgradient is the same as gradient in regions in which the
function is differentiable. Thus,

∇sσ(s) = 1, s ∈ (θ,∞) , ∇sσ(s) = 0 if s < θ and ∇sσ(s) ∈ [0, 1] if s = θ

The interval [0, 1] is the subdifferential (denoted ∂), which is set of subgradients of σ at
θ.

Is there a problem in cascading several layers of ReLU? Recall that we invoked subgra-
dients in justifying the Iterative Soft Thresholding Algorithm for LASSO. And that LASSO
gave sparsity owing to hard thresholding.

Solution:
All the gradients and partial derivatives in the backpropagation algorithm will remain

unchanged except for the ∂σl+1
p

∂suml+1
p

since σ is not differentiable now at all points. So the new

∂σl+1
p

∂suml+1
p

= 1, suml+1
p ∈ [θ,∞) ,

∂σl+1
p

∂suml+1
p

= 0 if suml+1
p < θ

will be one possible choice

• For a single example (x, y):

−

 K∑
k=1

yk log
(
σL
k (x)

)
+ (1− yk) log

(
1− σL

k (x)
)

+
λ

2m

L∑
l=1

sl−1∑
i=1

sl∑
j=1

(
wl

ij

)2

(1)

1



• ∂E
∂σl

j
=

sl+1∑
p=1

∂E

∂suml+1
p

∂suml+1
p

∂σl
j

=

sl+1∑
p=1

∂E
∂σl+1

p

∂σl+1
p

∂suml+1
p

wl+1
jp since ∂suml+1

p

∂σl
j

= wl+1
jp

• ∂E
∂σL

j
= − yj

σL
j
− 1−yj

1−σL
j

Backpropagation in Action

σl−1
sl−1

σl−1
i

σl−1
2

σl−1
1

∂E
∂σl

j
=

sl+1∑
p=1

∂E
∂σl+1

p

∂σl+1
p

∂suml+1
p

w
l+1
jp

∂E
∂σlsl

=

sl+1∑
p=1

∂E
∂σl+1

p

∂σl+1
p

∂suml+1
sl+1

w
l+1
sl+1p

wl
sl−1j

wl
ij

wl
2j

wl
1j

wl
sl−1sl

wl
isl

wl
2sl

wl
1sl

σL
1

σL
K

(l − 1)th layer

Backpropagation in Action

.

σl−1
i

.

.

∂E
∂σl

j

∂E
∂σlsl

.

∂E
∂wl

ij
= ∂E

∂σl
j

∂σl
j

∂suml
j

∂suml
j

∂wl
ij

+ λ
2m

wl
ij

.

.

.

.

.

.

σL
1

σL
K

(l − 1)th layer

Recall and Substitute

2



• suml
j =

sl−1∑
k=1

wl
kjσ

l−1
k and σl

i =
1

1+e−suml
i

• ∂E
∂wl

ij
= ∂E

∂σl
j

∂σl
j

∂suml
j

∂suml
j

∂wl
ij

+ λ
2m

wl
ij

• ∂σl
j

∂suml
j
= 1, if suml

j ∈ [θ,∞) ,
∂σl

j
∂suml

j
= 0 if suml

j < θ

• ∂suml
j

∂wl
ij

= σl−1
i

• ∂E
∂σl

j
=

sl+1∑
p=1

∂E
∂σl+1

j

∂σl+1
j

∂suml+1
j

wl+1
jp

• ∂E
∂σL

j
= − yj

σL
j
− 1−yj

1−σL
j

Backpropagation in Action

.

σl−1
i

.

.

∂E
∂σl

j
, σl

j

∂E
∂σlsl

, σl
sl

.

∂E
∂wl

ij
= ∂E

∂σl
j

∂σl
j

∂suml
j
σl−1

i + λ
2m

wl
ij

.

.

.

.

.

.

σL
1

σL
K

(l − 1)th layer

Backpropagation in Action

3



.

σl−1
i

.

.

∂E
∂σl

j

∂E
∂σlsl

.

wl
ij = wl

ij − η ∂E
∂wl

ij

.

.

.

.

.

.

σL
1

σL
K

(l − 1)th layer

The Backpropagation Algorithm for Training NN

1. Randomly initialize weights wl
ij for l = 1, . . . , L, i = 1, . . . , sl, j = 1, . . . , sl+1.

2. Implement forward propagation to get fw(x) for every x ∈ D.

3. Execute backpropagation on any misclassified x ∈ D by performing gradient descent
to minimize (non-convex) E (w) as a function of parameters w.

4. ∂E
∂σL

j
= − yj

σL
j
− 1−yj

1−σL
j

for j = 1 to sL.

5. For l = L− 1 down to 2:

(a) ∂σl
j

∂suml
j
= 1, if suml

j ∈ [θ,∞) ,
∂σl

j
∂suml

j
= 0 if suml

j < θ

(b) ∂E
∂σl

j
=

sl+1∑
p=1

∂E
∂σl+1

j

∂σl+1
j

∂suml+1
j

wl+1
jp

(c) ∂E
∂wl

ij
= ∂E

∂σl
j

∂σl
j

∂suml
j
σl−1

i + λ
2m

wl
ij

(d) wl
ij = wl

ij − η ∂E
∂wl

ij

6. Keep picking misclassified examples until the cost function E (w) shows significant
reduction; else resort to some random perturbation of weights w and restart a couple
of times.

Problem 2. Compute the minimum number of multiplications and additions for a single
backpropagation while also estimating the memory required for the minimum number of
such multiplications and additions to become possible.

4



Problem 3. Solve the assignment at https://github.com/tensorflow/tensorflow/blob/
master/tensorflow/examples/udacity/4_convolutions.ipynb

Follow the instructions to implement and run each indicated step. Some steps have
been implemented for you. This is a self-evaluated assignment. Make sure you are able to
solve each problem and answer any posed questions and save the answers/solutions wherever
possible.

5

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/udacity/4_convolutions.ipynb
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/udacity/4_convolutions.ipynb

