
Tutorial 8

Tuesday 11th October, 2016

Problem 1. In class, we saw the detailed derivation of backpropogation update rules when
each of the activation units is a sigmoid. You need to derive all the update rules when each
activation unit happens to be rectified linear unit (ReLU).

σ(s) = max(θ, s)

(since we often represent σ).) by g(.), this also means g(s) = max(θ, s))
Typically, θ = 0. Note that ReLU is differentiable at all points except at s = θ. But

by using subgradient ∇sσ instead of gradient ∇σ, we can complete backpropagation as
‘subgradient descent’. Note that subgradient is the same as gradient in regions in which the
function is differentiable. Thus,

∇sσ(s) = 1, s ∈ (θ,∞) , ∇sσ(s) = 0 if s < θ and ∇sσ(s) ∈ [0, 1] if s = θ

The interval [0, 1] is the subdifferential (denoted ∂), which is set of subgradients of σ at
θ.

Is there a problem in cascading several layers of ReLU? Recall that we invoked subgra-
dients in justifying the Iterative Soft Thresholding Algorithm for LASSO. And that LASSO
gave sparsity owing to hard thresholding.
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Recall and Substitute
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The Backpropagation Algorithm for Training NN

1. Randomly initialize weights wl
ij for l = 1, . . . , L, i = 1, . . . , sl, j = 1, . . . , sl+1.

2. Implement forward propagation to get fw(x) for every x ∈ D.

3. Execute backpropagation on any misclassified x ∈ D by performing gradient descent
to minimize (non-convex) E (w) as a function of parameters w.
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6. Keep picking misclassified examples until the cost function E (w) shows significant
reduction; else resort to some random perturbation of weights w and restart a couple
of times.

Problem 2. Compute the minimum number of multiplications and additions for a single
backpropagation while also estimating the memory required for the minimum number of
such multiplications and additions to become possible.
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Problem 3. Solve the assignment at https://github.com/tensorflow/tensorflow/blob/
master/tensorflow/examples/udacity/4_convolutions.ipynb

Follow the instructions to implement and run each indicated step. Some steps have
been implemented for you. This is a self-evaluated assignment. Make sure you are able to
solve each problem and answer any posed questions and save the answers/solutions wherever
possible.
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