Tutorial 8

Tuesday $11^{\text {th }}$ October, 2016

Problem 1. In class, we saw the detailed derivation of backpropogation update rules when each of the activation units is a sigmoid. You need to derive all the update rules when each activation unit happens to be rectified linear unit (ReLU).

$$
\sigma(s)=\max (\theta, s)
$$

(since we often represent σ).) by $g($.$) , this also means g(s)=\max (\theta, s)$)
Typically, $\theta=0$. Note that ReLU is differentiable at all points except at $s=\theta$. But by using subgradient $\nabla_{s} \sigma$ instead of gradient $\nabla \sigma$, we can complete backpropagation as 'subgradient descent'. Note that subgradient is the same as gradient in regions in which the function is differentiable. Thus,

$$
\nabla_{s} \sigma(s)=1, s \in(\theta, \infty), \nabla_{s} \sigma(s)=0 \text { if } s<\theta \text { and } \nabla_{s} \sigma(s) \in[0,1] \text { if } s=\theta
$$

The interval $[0,1]$ is the subdifferential (denoted ∂), which is set of subgradients of σ at θ.

Is there a problem in cascading several layers of ReLU? Recall that we invoked subgradients in justifying the Iterative Soft Thresholding Algorithm for LASSO. And that LASSO gave sparsity owing to hard thresholding.

Solution:

All the gradients and partial derivatives in the backpropagation algorithm will remain unchanged except for the $\frac{\partial \sigma_{\mathrm{P}}^{1+1}}{\partial \text { sum }_{\mathrm{P}}^{1+1}}$ since σ is not differentiable now at all points. So the new

$$
\frac{\partial \sigma_{p}^{l+1}}{\partial \operatorname{sum}_{p}^{l+1}}=1, \operatorname{sum}_{p}^{l+1} \in[\theta, \infty), \frac{\partial \sigma_{p}^{l+1}}{\partial s u m_{p}^{l+1}}=0 \text { if } \operatorname{sum}_{p}^{l+1}<\theta
$$

will be one possible choice

- For a single example (\mathbf{x}, y) :

$$
\begin{array}{r}
-\left[\sum_{k=1}^{K} y_{k} \log \left(\sigma_{k}^{L}(\mathbf{x})\right)+\left(1-y_{k}\right) \log \left(1-\sigma_{k}^{L}(\mathbf{x})\right)\right] \\
+\frac{\lambda}{2 m} \sum_{l=1}^{L} \sum_{i=1}^{s_{l-1}} \sum_{j=1}^{s_{l}}\left(w_{i j}^{l}\right)^{2} \tag{1}
\end{array}
$$

- $\frac{\partial \mathbf{E}}{\partial \sigma_{\mathbf{j}}^{1}}=\sum_{p=1}^{s_{l+1}} \frac{\partial E}{\partial s u m_{p}^{l+1}} \frac{\partial s u m_{p}^{l+1}}{\partial \sigma_{j}^{l}}=\sum_{p=1}^{s_{l+1}} \frac{\partial \mathbf{E}}{\partial \sigma_{\mathbf{p}}^{1+1}} \frac{\partial \sigma_{\mathbf{p}}^{\mathbf{l}+\mathbf{1}}}{\partial \mathbf{s u m}_{\mathbf{p}}^{\mathbf{l}+1}} w_{j p}^{l+1}$ since $\frac{\partial s u m_{p}^{l+1}}{\partial \sigma_{j}^{l}}=w_{j p}^{l+1}$
- $\frac{\partial \mathbf{E}}{\partial \sigma_{\mathbf{j}}^{\mathrm{L}}}=-\frac{\mathbf{y}_{\mathbf{j}}}{\sigma_{\mathrm{j}}^{\mathrm{L}}}-\frac{1-\mathbf{y}_{\mathbf{j}}}{1-\sigma_{\mathrm{j}}^{\mathrm{L}}}$

Backpropagation in Action

Backpropagation in Action

Recall and Substitute

- $\operatorname{sum}_{j}^{l}=\sum_{k=1}^{s_{l-1}} w_{k j}^{l} \sigma_{k}^{l-1}$ and $\sigma_{i}^{l}=\frac{1}{1+e^{-s u m_{i}^{l}}}$
- $\frac{\partial \mathbf{E}}{\partial \mathbf{w}_{\mathbf{i j}}^{1}}=\frac{\partial \mathbf{E}}{\partial \sigma_{\mathrm{j}}^{1}} \frac{\partial \sigma_{\mathbf{j}}^{1}}{\partial \mathbf{s u m}_{\mathbf{j}}^{1}} \frac{\partial \mathbf{s u m}_{\mathrm{j}}^{1}}{\partial \mathbf{w}_{\mathrm{ij}}^{1}}+\frac{\lambda}{2 m} w_{i j}^{l}$
- $\frac{\partial \sigma_{\mathbf{j}}^{1}}{\partial \mathbf{s u m}_{\mathbf{j}}^{1}}=\mathbf{1}$, if $\operatorname{sum}_{\mathbf{j}}^{1} \in[\theta, \infty), \frac{\partial \sigma_{\mathbf{j}}^{1}}{\partial \operatorname{sum}_{\mathbf{j}}^{1}}=\mathbf{0}$ if $\operatorname{sum}_{\mathbf{j}}^{1}<\theta$
- $\frac{\partial \operatorname{sum}_{\mathrm{j}}^{1}}{\partial \mathrm{w}_{\mathrm{ij}}^{1}}=\sigma_{\mathrm{i}}^{\mathrm{l}-1}$
- $\frac{\partial \mathbf{E}}{\partial \sigma_{\mathbf{j}}^{\mathrm{l}}}=\sum_{p=1}^{s_{l+1}} \frac{\partial \mathbf{E}}{\partial \sigma_{\mathbf{j}}^{\mathbf{1 + 1}}} \frac{\partial \sigma_{\mathbf{j}}^{\mathbf{1}+\mathbf{1}}}{\partial \mathbf{s u m}_{\mathbf{j}}^{\mathbf{1}}} w_{j p}^{l+1}$
- $\frac{\partial \mathbf{E}}{\partial \sigma_{\mathbf{j}}^{\mathrm{L}}}=-\frac{\mathbf{y}_{\mathbf{j}}}{\sigma_{\mathrm{j}}^{\mathrm{L}}}-\frac{1-\mathbf{y}_{\mathbf{j}}}{1-\sigma_{\mathrm{j}}^{\mathrm{L}}}$

Backpropagation in Action

Backpropagation in Action

The Backpropagation Algorithm for Training NN

1. Randomly initialize weights $w_{i j}^{l}$ for $l=1, \ldots, L, i=1, \ldots, s_{l}, j=1, \ldots, s_{l+1}$.
2. Implement forward propagation to get $f_{\mathbf{w}}(\mathbf{x})$ for every $\mathbf{x} \in \mathcal{D}$.
3. Execute backpropagation on any misclassified $\mathbf{x} \in \mathcal{D}$ by performing gradient descent to minimize (non-convex) $E(\mathbf{w})$ as a function of parameters \mathbf{w}.
4. $\frac{\partial \mathrm{E}}{\partial \sigma_{\mathrm{j}}^{\mathrm{L}}}=-\frac{\mathrm{y}_{\mathrm{j}}}{\sigma_{\mathrm{j}}^{\mathrm{L}}}-\frac{1-\mathrm{y}_{\mathrm{j}}}{1-\sigma_{\mathrm{j}}^{\mathrm{L}}}$ for $j=1$ to s_{L}.
5. For $l=L-1$ down to 2 :
(a) $\frac{\partial \sigma_{\mathrm{j}}^{1}}{\partial \operatorname{sum}_{\mathrm{j}}^{1}}=\mathbf{1}$, if $\operatorname{sum}_{\mathbf{j}}^{1} \in[\theta, \infty), \frac{\partial \sigma_{\mathrm{j}}^{1}}{\partial \operatorname{sum}_{\mathrm{j}}^{1}}=\mathbf{0}$ if $\operatorname{sum}_{\mathbf{j}}^{1}<\theta$
(b) $\frac{\partial \mathbf{E}}{\partial \sigma_{\mathbf{j}}^{\mathrm{j}}}=\sum_{p=1}^{s_{l+1}} \frac{\partial \mathbf{E}}{\partial \sigma_{\mathbf{j}}^{1 \mathbf{1}+1}} \frac{\partial \sigma_{\mathbf{j}}^{1+\mathbf{1}}}{\partial \mathbf{s u m}_{\mathbf{j}}^{\mathbf{1}+\boldsymbol{1}}} w_{j p}^{l+1}$
(c) $\frac{\partial \mathbf{E}}{\partial \mathbf{w}_{\mathrm{ij}}^{1}}=\frac{\partial \mathrm{E}}{\partial \sigma_{\mathrm{j}}^{\top}} \frac{\partial \sigma_{\mathrm{j}}^{1}}{\partial \operatorname{sum}_{\mathrm{j}}^{\top}} \sigma_{\mathrm{i}}^{1-1}+\frac{\lambda}{2 m} w_{i j}^{l}$
(d) $w_{i j}^{l}=w_{i j}^{l}-\eta \frac{\partial \mathbf{E}}{\partial \mathbf{w}^{1}{ }^{1}}$
6. Keep picking misclassified examples until the cost function $E(\mathbf{w})$ shows significant reduction; else resort to some random perturbation of weights \mathbf{w} and restart a couple of times.

Problem 2. Compute the minimum number of multiplications and additions for a single backpropagation while also estimating the memory required for the minimum number of such multiplications and additions to become possible.

Problem 3. Solve the assignment at https://github.com/tensorflow/tensorflow/blob/ master/tensorflow/examples/udacity/4_convolutions.ipynb

Follow the instructions to implement and run each indicated step. Some steps have been implemented for you. This is a self-evaluated assignment. Make sure you are able to solve each problem and answer any posed questions and save the answers/solutions wherever possible.

