
Tutorial 9 (along with some solutions)

Sunday 13th November, 2016

1 Dual of the Support Vector Classifier

Taking hints from the Support Vector Regression Problem, derive the Dual for
SVM Primal Classification Problem stated below:

• (w∗, b∗, ξ∗i ) = argmin
w,b,ξi

1
2
‖w‖2 + C

∑n
i=1 ξi

s.t. yi(w
>φ(xi) + b) ≥ 1− ξi and

ξi ≥ 0, ∀i = 1, . . . , n

– Recall that we derived this form by minimizing 1
2
‖w‖2 instead of maximizing 2

‖w‖
(1
2
‖w‖2 is monotonically decreasing with respect to 2

‖w‖)

– C determines the trade-off between the error
∑
ξi and the margin 2

‖w‖

1.1 ANSWER

• Let L∗(α, µ) = minw,b,ξ L(w, b, ξ, α, µ)

• By weak duality theorem, we have:
L∗(α, µ) ≤ minw,b,ξ

1
2
‖w‖2 + C

∑n
i=1 ξi

s.t. yi(w
>φ(xi) + b) ≥ 1− ξi, and

ξi ≥ 0, ∀i = 1, . . . , n

• The above is true for any αi ≥ 0 and µi ≥ 0

• Thus,

max
α,µ

L∗(α, µ) ≤ min
w,b,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi

1.2 Dual objective

• In case of SVM, we have a strictly convex objective and linear constraints – therefore,
strong duality holds:

max
α,µ

L∗(α, µ) = min
w,b,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi
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• This value is precisely obtained at the (w∗, b∗, ξ∗, α∗, µ∗) that satisfies the necessary
(and sufficient) optimality conditions

• Assuming that the necessary and sufficient conditions (KKT or Karush–Kuhn–Tucker
conditions) hold, our objective becomes:

max
α,µ

L∗(α, µ)

• L(w, b, ξ, α, µ) = 1
2
‖w‖2 + C

∑n
i=1 ξi +

n∑
i=1

αi(1− ξi − yi(w>φ(xi) + b))−
n∑
i=1

µiξi

• We obtain w, b, ξ in terms of α and µ by setting ∇w,b,ξL = 0:

– w.r.t. w: w =
n∑
i=1

αiyiφ(xi)

– w.r.t. b: −b
n∑
i=1

αiyi = 0

– w.r.t. ξi: αi + µi = C

• Thus, we get:
L(w, b, ξ, α, µ)
= 1

2

∑
i

∑
j αiαjyiyjφ

>(xi)φ(xj)+C
∑

i ξi+
∑

i αi−
∑

i αiξi−
∑

i αiyi
∑

j αjyjφ
>(xj)φ(xi)−

b
∑

i αiyi −
∑

i µiξi
= −1

2

∑
i

∑
j αiαjyiyjφ

>(xi)φ(xj) +
∑

i αi

1.3 The dual optimization problem becomes

•
max
α
−1

2

∑
i

∑
j

αiαjyiyjφ
>(xi)φ(xj) +

∑
i

αi

s.t.
αi ∈ [0, C], ∀i and∑

i αiyi = 0

• Deriving this did not require the complementary slackness conditions

• Conveniently, we also end up getting rid of µ

2 Transfer Learning

In practice, very few people train an entire Convolutional Network from scratch (with random
initialization), because it is relatively rare to have a dataset of sufficient size. Instead, it is
common to pretrain a ConvNet on a very large dataset (e.g. ImageNet, which contains 1.2
million images with 1000 categories), and then use the ConvNet either as an initialization

2



or a fixed feature extractor for the task of interest. Reflect on the following two major
Transfer Learning1 scenarios:

1. ConvNet as fixed feature extractor. Take a ConvNet pretrained on ImageNet, remove
the last fully-connected layer (this layers outputs are the 1000 class scores for a different
task like ImageNet), then treat the rest of the ConvNet as a fixed feature extractor for
the new dataset. In an AlexNet, this would compute a 4096-D vector for every image
that contains the activations of the hidden layer immediately before the classifier. We
call these features CNN codes. It is important for performance that these codes are
ReLUd (i.e. thresholded at zero) if they were also thresholded during the training of
the ConvNet on ImageNet (as is usually the case). Once you extract the 4096-D codes
for all images, train a linear classifier (e.g. Linear SVM or Softmax classifier) or a
nonlinear classifier (e.g. Decision tree) for the new dataset.

2. Fine-tuning the ConvNet. The second strategy is to not only replace and retrain the
classifier on top of the ConvNet on the new dataset, but to also fine-tune the weights of
the pretrained network by continuing the backpropagation. It is possible to fine-tune all
the layers of the ConvNet, or it is possible to keep some of the earlier layers fixed (due
to overfitting concerns) and only fine-tune some higher-level portion of the network.
This is motivated by the observation that the earlier features of a ConvNet contain
more generic features (e.g. edge detectors or color blob detectors) that should be useful
to many tasks, but later layers of the ConvNet becomes progressively more specific to
the details of the classes contained in the original dataset. In case of ImageNet for
example, which contains many dog breeds, a significant portion of the representational
power of the ConvNet may be devoted to features that are specific to differentiating
between dog breeds.

Also explain how you could do effective use of CNN-based feature maps in deci-
sion tree learning.

Solution: Most of the non-triviality will be about how to employ decision tree learning
on numeric features.

One solution is to create a discrete attribute to test each continuous valued attribute.
In the case of transfer learning with CNN, a feature (or heat2) map from CNN might have
a continuous attribute, indicative of the any of the following numeric indices at http://

places.csail.mit.edu/demo.html such as naturallight, openarea, ruggedscene, climbing,
rockstone, directsunsunny, dry, vacationingtouring, natural, warm. We will illustrate a sim-
ple procedure to deal with numeric attributes with a very simple (non-CNN) problem - that
of detecting whether or not a child is malnourished.

Let us say the continuous valued attribute was (Child) Weight which assumes the values
{15, 16, 19, 22, 27, 29} in the training set.

• Weight ∈ {15, 16, 19, 22, 27, 29} kg in the training data.

• (Weight ≥ 72) = t

1Mostly from http://cs231n.github.io/transfer-learning/
2https://en.wikipedia.org/wiki/Heat_map
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Weight: 15 16 19 22 27 29
Malnourished: Yes No Yes No Yes No

3 Decision Trees and Feature Selection

• We discussed the information gain criterion for feature splitting in Decision trees.
Suggest two other criteria. Motivate each.

3.1 ANSWER

Solution3: The splitting attribute is selected greedily as mentioned in the last class
and is based on maximum reduction in impurity. The expression is given by:

argmax
V (φi),φi

(
Imp(S)−

∑
vij∈V (φi)

|Svij |
|S|

Imp(Svij)
)

where Sij ⊆ D is a subset of dataset such that each instance x has attribute value
φi(x) = vij.

1. An example choice of Imp(S) discussed in the class notes is the entropy4 Imp(S) =

H(S) = −
K∑
i=1

Pr(Ci) • log(Pr(Ci)).

2. Alternative impurity measures are shown in Table 1 and they all measure the
extent of spread of the probabilities over the classes. In other words, as shown
in Figure 1 each impurity measure indicates the extent to which the data is
“confused” about the classes.

Name Imp (D)

Entropy −
K∑
i=1

Pr(Ci) • log(Pr(Ci))

Gini Index
K∑
i=1

Pr(Ci)(1− Pr(Ci))

Class (Min Prob) Error argmin
i

(1− Pr(Ci))

Table 1: Decision Tree: Impurity measurues

3Section 5.1 of https://www.cse.iitb.ac.in/~cs725/notes/classNotes/extra_lecturenotes_

cs725.pdf
4See slide 5 of http://23.253.82.180/course/307/858/2217
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Figure 1: Plot of Entropy, Gini Index and Misclassification Accuracy. Source: https:

//inspirehep.net/record/1225852/files/TPZ_Figures_impurity.png

The second term in the above expression is the expected new impurity. V is a function
which returns the split values given an attribute φi. So V (φi) can be varied for any φi.
It could have many values or a range of values. A example of V (φi) is V (φi) = {1, 3, 5}
which translates to the following split points φi < 1, 1 ≤ φi < 3, 3 ≤ φi < 5, φi ≥ 5

3.1.1 An empirical observation

Since smaller range of attribute values in each split in Vi tends to lead to more skewed
class distribution in that split, larger |V (φi)| generally yields larger reduction in im-
purity. This makes the algorithm to choose more skewed and complex trees and leads
to the problem of overfitting, if not fixed. Recall that in overfitting, the system
learns a model which is specific to the training collection and does not generalize well
on unseen data.

3.1.2 Need to address this empirical observation

This could be achieved by the maximization of the following expression:

Impskew(S) = Imp(S) −

(∑
vij∈V (φi)

|Sv |
|S| Imp(Svij)

−
∑

v∈V (φi)
|Sv |
|S| log(Sv)

)

The second term in the above expression is called 4Imp(S). The intuition for using
this term is that, more the skew, lower will be the denominator and is therefore better
at countering lowered impurity. In other words, this new measure prefers a less skewed
tree as shown in Figure 2. We will refer to the above modified measure Impskew(S) as
the Skew Adjusted Information Gain.
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Figure 2: Skewness and empirical observation

3.1.3 Summing it all up

Below we present the overall decision tree learning algorithm with stopping criteria as
described above. Ideally, this algorithm goes on until all the data points at the leaf are
of the same single class and the two stopping criterion added to the algorithm make it
terminate even if such a condition does not occur.

Algorithm 1 T = dtree (S, φi, V )

if φ = empty then
return a tree with only one branch Cj, where Cj is the majority class in S {Stopping
criterion}

end if
if all instances in S have label = ci then

return a tree with only one branch ci {Stopping criterion}
end if
φj = argmaxV (φi),φi

(
4Imp(S)

)
∀v ∈ V (φi)

Tv = dtree(Sv, φ− φi, V )
return a tree rooted at φi and having all the Tv branches

• We also discussed how the information gain criterion can be used for feature selection
in general. Suggest two other criteria. You can build on your answer to the question
above.

3.2 ANSWER

The answer is similar to the one above. All the three impurity functions, viz., entropy,
gini-index and misclassification error could be used for feature selection. Moreover, the
Skew Adjusted Information Gain measure Impskew(S) could also be used for feature
selection.

• OPTIONAL: Suggest how you could used hypothesis testing for pruning or stopping
decision tree construction.
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3.3 ANSWER

Simpler trees are preferred over their complex counterparts for the following reasons:

1. They are faster to execute

2. They perform better on unseen data. In otherwords, they “generalize well”. For
instance, a simpler tree learnt in the class had lower accuracy on the train set but
higher accuracy on the unseen test set.

3.3.1 Alternatives in Pruning

There are various strategies/heuristics to decrease the complexity of the tree learnt.
Some of the options are as follows:

1. Early termination. Stop if 4Imp(S) < θ, where θ is some threshold.

2. Majority class ≥ α%, for some value of α

3. Pruning: The idea is to build complex trees and prune them. This is a good
option, since the construction procedure can be greedy and does not have to look
ahead. Some Hypothesis testing procedures could be used to achieve this. (For
instance, the binomial and χ2-tests).

4. Use an objective function like

maxφi

(
4Imp(S, i)− Complexity(tree)

)
The complexity is characterized by the description length principle (MDL)

Please note that the section that follows is a completely optional reading.
However, it could enhance your understanding significantly.

3.3.2 (OPTIONAL) Hypothesis Testing for Decision Tree Pruning

The question to answer while constructing a simpler decision tree is Do we have to split a
node (using some attribute) or not ? Consider the situation in Figure 3. The numbers n1, n2

etc. indicate the number of instances of the particular class.
If the class ratios of instances remain similar to that before the split, then we might not

gain much by splitting that node. To quantify this, we employ Hypothesis testing. The idea
is to compare 2 probability distributions.

We will illustrate with a 2-class classification problem. If p is the probability of taking
the left branch, the probability of taking the right branch is 1 − p. Then we obtain the
following:

n11 = pn1

n21 = pn2

n12 = (1− p)n1

n22 = (1− p)n2

7



Figure 3: Splitting criterion

Consider the original ratio (also called reference distribution) of positive to total no. of
tuples. If the same ratio is obtained after the split, we will not be interested in such splits.
i.e.,

n1

n1 + n2

=
n11

n11 + n21

or in general
nj

n1 + n2

=
nj1

n1i + n2i

∀j no. of classes & i = 1, 2

Why? Because these splits only add to the complexity of the tree and do not convey any
meaningful information not already present. Suppose we are interested not only in equal
distributions but also in approximately equal distributions i.e.,

n1

n1 + n2

≈ n11

n11 + n21

The idea is to compare two probability distributions. It is here that the concept of
hypothesis testing is employed.

The ratio n1

n1+n2
is called the reference distribution. In general, it is:

p(Ci) = µi =
ni
K∑
i=1

ni

for a given class i (pre-splitting distribution)

3.3.3 Hypothesis testing: problem

Note: The text presented here in red refers specifically to the decision tree problem. The
text in black is for the general Hypothesis testing problem and can be read up in Section 7 of
https://www.cse.iitb.ac.in/~cs725/notes/classNotes/extra_lecturenotes_cs725_aut11.

pdf

Let X1, . . . Xn be i.i.d random samples that correspond to class labels of instances that
have gone into the left branch.
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The null hypothesis is H0 and the alternative hypothesis is H1:

H0 : X1, . . . , Xn ∈ C
H1 : X1, . . . , Xn /∈ C

The distribution of samples in the left branch is same as before splitting i.e. µ1, . . . µk.
Given a random sample, we need to test our hypothesis i.e., given an α ∈ [0, 1], we want

to determine a C such that

PrH0({X1, . . . Xn} /∈ C) ≤ α Type I error

Given an α ∈ [0, 1], probability that we decide that the pre-distribution and the left-
branch distribution are different, when in fact they are similar, is less than or eqaul to
α.

[Currently we are not very much interested in the Type II error, i.e. PrH1({X1, . . . Xn} ∈
C)].

Here, C is the set of all possible “interesting” random samples. Also,

PrH0({X1, . . . Xn} /∈ C
′
) ≤ PrH0({X1, . . . Xn} /∈ C) ∀C ′ ⊇ C

We are interested in the “smallest” / “tightest” C. This is called the critical region Cα.
Consequently,

PrH0({X1, . . . Xn} /∈ Cα) = α

3.3.4 Goodness-of-fit test for DTrees

Consider the test statistic Si =
∑n

j=1 δ(Xj, Ci).
We are interested in the hypothesisH0 where new-distribution = old-distribution(µ1, . . . µj).

EH0 [Yi] =
n∑
j=1

EH0 [δ(Xj, Ci)]

=
n∑
j=1

µi ∗ 1 + (1− µi) ∗ 0

= nµi

C =

{
(X1, . . . Xn)

∣∣∣∣∣
K∑
i=1

(Yi − EH0(Yi))
2

EH0(Yi)
≤ c

}
where c is some constant

=

{
(X1, . . . Xn)

∣∣∣∣∣
K∑
i=1

(Yi − nµi)2

nµi
≤ c

}
As we might have seen in a basic course on statistics5, the above expression ∼ χ2

K−1. We
then use the chi-square tables to find c given the value of α.

5Section 7 of https://www.cse.iitb.ac.in/~cs725/notes/classNotes/extra_lecturenotes_cs725.
pdf
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3.3.5 Final Heuristic used for DTree construction

• Compute
∑K

i=1
(Yi−nµi)2

nµi
∼ ts ∀ splits, where ts is the test statistic.

• Stop building the tree, if for a given α, ts ≤ cα ∀ splits

• Compute cα such that Prχ2
K−1

(x ≥ cα) = α

4 Adaboost (Advanced and Optional)

Recall the main idea behind Adaboost6. Let Ct(x) =
∑t

j=1 αjTj(x) be the boosted linear

combination of classifiers until tth iteration. Let the error to be minimized over αt be the
sum of its exponential loss on each data point,

Et =
m∑
i=1

exp
(
−y(i)Ct

(
x(i)
))

=
m∑
i=1

exp

(
−

(
y(i)

t∑
j=1

αjTj(x
(i))

))
Prove the following claims for Adaboost

1. Claim1: The error that is the sum of exponential loss on each data point is an upper
bound on the simple sum of training errors on each data point

Solution:

The simple sum of training errors on each data point is

m∑
i=1

δ
(
y(i) 6= sign

(
Ct
(
x(i)
)))

=
m∑
i=1

exp

(
δ

(
y(i) 6= sign

(
m∑
i=1

αiTi(x
(i))

)))
We next note that the exponential function7 is a convex function. That is,

exp

(
m∑
i=1

βiri

)
≤

m∑
i=1

βi exp(ri)

for each βi ∈ [0, 1] such that
m∑
i=1

βi = 1. By this convexity, one can derive (see Figure 4

on the next page:

Et =
m∑
i=1

δ
(
y(i) 6= sign

(
Ct
(
x(i)
)))
≤

m∑
i=1

exp
(
−y(i)Ct

(
x(i)
))

2. Claim2: αt = (1/2) ln ((1− errt)/errt) actually minimizes this upper bound.

3. (Advanced and Optional) Claim3: If each classifier is slightly better than random, that
is if errt < 1/K, Adaboost achieves zero training error exponentially fast

6https://www.cse.iitb.ac.in/~cs725/notes/lecture-slides/lecture-25-annotated.pdf
7https://en.wikipedia.org/wiki/Exponential_function
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Figure 4: Figure Illustrating how the exponential loss is an upper bound for the 0/1 loss
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