Lecture 3 - Regression
 Instructor: Prof. Ganesh Ramakrishnan

The Simplest ML Problem: Least Square Regression

- Curve Fitting: Motivation

Simplest is least squares, bayesian linear reg,

- Minimizing Error \qquad regularized error,

- Method of Least Squares linear algebra, optimization

Curve Fitting: Motivation

- Example scenarios:

- Prices of house to be fitted as a function of the area of the house
- Temperature of a place to be fitted as a function of its latitude and longitude and time of the year
- Stock Price (or BSE/Nifty value) to be fitted as a function of Company Earnings Multivariate regression
- Height of students to be fitted as a function of their weight
- One or more observations/parameters in the data are expected to represent the output in the future

Higher you go, the more expensive the house!

- Consider the variation of price (in \$) of house with variations in its height (in m) above the ground level (Mumbai)
- These are specified as coordinates of the 8 points: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{8}, y_{8}\right)$
- Desired: Find a pattern or curve that characterizes the price as a function of the height

Errors and Causes

- (Observable) Data is generally collected through measurements or surveys
- Surveys can have random human errors $\rightarrow y \mathrm{axis}^{\text {and }}$
- Measurements are subject to imprecision of the measuring or recording instrument $\rightarrow x$-axis error
- Outliers due to variability in the measurement or due to some experimental error;
- Robustness to Errors: Minimize the effect of error in predicted model
- Data cleansing: Outlier handling in a pre-processing step \longrightarrow most often, you want the model building to do implicit data cleansing.

Curve Fitting: The Process

- Curve fitting is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, possibly subject to constraints. - Wikipedia

Curve Fitting: The Process

- Curve fitting is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, possibly subject to constraints. - Wikipedia
- Need quantitative criteria to find the best fit
- Error function E : curve $f \times$ dataset $\mathcal{D} \longrightarrow \Re$
- Error function must capture the deviation of prediction from expected value

Example

- Consider the two candidate prediction curves in blue and red respectively respectively. Which is the better fit?

Figure: Price of house vs. its height - for illustration purpose only

Question
$f\left(x_{i}\right)$
$\cdots:$

What are some options for error function $E(f, D)$ that measure the deviation of prediction from expected value?
$\sum_{i}\left(f\left(x_{i}\right)-y_{i}\right)^{2}:$ Euclidean constance
$\sum_{i}\left|f\left(x_{i}\right)-y_{i}\right|$: Manhattan distance
$\sum_{i} f\left(x_{i}\right)-y_{i}$: Unsigned distance (when bias is desired)

Examples of E

- $\sum_{D} f\left(x_{i}\right)-y_{i}$
- $\sum_{D}\left|f\left(x_{i}\right)-y_{i}\right|$
$\} \ln 1-d$ case ie $y_{i}, f\left(x_{i}\right) \in \mathbb{R}$
- $\left.\sum_{D}\left(f\left(x_{i}\right)-y_{i}\right)^{2}\right\} \begin{gathered}\text { In 1-d behave similady exc ep } \\ \text { these bis }\end{gathered}$
- $\sum_{D}\left(f\left(x_{i}\right)-y_{i}\right)^{3}$ that $\left(f\left(x_{i}\right) y i\right)^{2}$ discourages
- and many more really far away might to
so $\left(f\left(x_{i}\right)-y_{i}\right)^{2}$ robust than
less outliers if (a, i)-gil
Fixing outher sensitivity
can be through (1) Fixing error in OR
(2) Regularization \& bayesian estimation

Question

Which choice F do you think can give us best fit curve and why? Hint: Think of these errors as distances.

Squared Error

$$
\sum_{D}\left(f\left(x_{i}\right)-y_{i}\right)^{2}
$$

- One best fit curve corresponds to f that minimizes the above function. It..
(1) Is continuous and differentiable
(2) Can be visualized as square of Euclidean distance between predicted and observed values
- Mathematical optimization of this function: Topic of following lectures.
- This is the Method of least squares

Regression, More Formally

- Formal Definition
- Types of Regression
- Geometric Interpretation of least square solution

Linear Regression as a canonical example

- Optimization (Formally deriving least Square Solution)
- Regularization (Ridge Regression, Lasso), Bayesian Interpretation (Bayesian Linear Regression)
- Non-parametric estimation (Local linear regression),
- Non-linearity through Kernels (Support Vector Regression)

Linear Regression with Illustration

- Regression is about learning to predict a set of output variables (dependent variables) as a function of a set of input variables (independent variables)
- Example
- A company wants to determine how much it should spend on T.V commercials to increase sales to a desired level y^{*}
- Basis?

Linear Regression with Illustration

- Regression is about learning to predict a set of output variables (dependent variables) as a function of a set of input variables (independent variables)
- Example
- A company wants to determine how much it should spend on T.V commercials to increase sales to a desired level y^{*}
- Basis? It has previous observations of the form $\left\langle x_{i}, y_{i}\right\rangle$,
$\star x_{i}$ is an instance of money spent on advertisements and y_{i} was the corresponding observed sale figure

Linear Regression with Illustration

- Regression is about learning to predict a set of output variables (dependent variables) as a function of a set of input variables (independent variables)
- Example
- A company wants to determine how much it should spend on T.V commercials to increase sales to a desired level y^{*}
- Basis? It has previous observations of the form $\left\langle x_{i}, y_{i}\right\rangle$,
$\star x_{i}$ is an instance of money spent on advertisements and y_{i} was the corresponding observed sale figure
- Suppose the observations support the following linear approximation

$$
\begin{equation*}
y=\beta_{0}+\beta_{1} * x \tag{1}
\end{equation*}
$$

Then $x^{*}=\frac{y^{*}-\beta_{0}}{\beta_{1}}$ can be used to determine the money to be spent

- Estimation for Regression: Determine appropriate value for β_{0} and β_{1} from the past observations $\beta_{0}, \beta_{1}=\operatorname{argmin} \sum_{0 \in D}(y-f(x))^{2}$

Linear Regression with Illustration

Figure: Linear regression on T.V advertising vs sales figure

What will it mean to have sales as a non-linear function of investment in advertising?
$y \approx f\left(\phi_{1}(x), \overrightarrow{\phi_{2}(x)} \phi_{x}^{(x)} \log \right)^{\circ g}($ value $)$ or the of day of adveshe - men
ϕ_{i} : value
x is an object
representing specific investments
$\phi_{1} . . \phi_{n}$ are basis fins or features with hope that linear combination of ϕ 's as f is a good approx to y
$f(x)=\omega^{\top} \phi(x) \quad$ [step 1 to nonlinearity]

Basic Notation

- Data set: $\mathcal{D}=<\mathbf{x}_{\mathbf{1}}, \mathbf{y}_{\mathbf{1}}>, . .,<\mathbf{x}_{\mathbf{m}}, \mathbf{y}_{\mathbf{m}}>$
- Notation (used throughout the course)
- m, $=$ number of trining examples
x^{\prime} s $=$ input independent
objecto
- $\mathbf{y}^{\prime} \mathbf{s}=$ output/dependent/'target' variables
- (\mathbf{x}, \mathbf{y}) - a single training example
- $\left(\mathbf{x}_{\mathbf{j}}, \mathbf{y}_{\mathbf{j}}\right)$ - specific example ($j^{\text {th }}$ training example)
- j is an index into the training set
- ϕ_{i} 's are the attribute/basis functions, and let

$$
\phi=\left[\begin{array}{cccc}
\phi_{1}\left(\mathbf{x}_{\mathbf{1}}\right) & \phi_{2}\left(\mathbf{x}_{\mathbf{1}}\right) & \ldots \ldots & \phi_{p}\left(\mathbf{x}_{\mathbf{1}}\right) \tag{2}\\
\cdot & & & \\
\cdot & & & \\
\phi_{1}\left(\mathbf{x}_{\mathbf{m}}\right) & \phi_{2}\left(\mathbf{x}_{\mathbf{m}}\right) & \ldots \ldots & \phi_{p}\left(\mathbf{x}_{\mathbf{m}}\right)
\end{array}\right]
$$

$$
\mathbf{y}=\left[\begin{array}{c}
y_{1} \tag{3}\\
\cdot \\
y_{m}
\end{array}\right]
$$

Formal Definition

- General Regression problem: Determine a function f^{*} such that $f^{*}(x)$ is the best predictor for y, with respect to \mathcal{D} :

$$
f^{*}=\underset{f \in F}{\operatorname{argmin}} E(f, \mathcal{D})
$$

Here, F denotes the class of functions over which the error minimization is performed

- Parametrized Regression problem: Need to determine parameters \mathbf{w} for the function $f(\phi(\mathbf{x}), \mathbf{w})$ which minimize our error function $E(f(\phi(\mathbf{x}), \mathbf{w}), \mathcal{D})$

$$
\mathbf{w}^{*}=\underset{\mathbf{w}}{\operatorname{argmin}}\langle E(\underbrace{f(\phi(\mathbf{x}), \mathbf{w})}_{\text {parametrized }}, \mathcal{D})\rangle
$$

Types of Regression

- Classified based on the function class and error function
- F is space of linear functions $f(\phi(\mathbf{x}), \mathbf{w})=\mathbf{w}^{\top} \phi(\mathbf{x})+b \Longrightarrow$ Linear Regression
- Problem is then to determine \mathbf{w}^{*} such that,

$$
\begin{equation*}
\mathbf{w}^{*}=\underset{\mathbf{w}}{\operatorname{argmin}} E(\mathbf{w}, \mathcal{D}) \tag{4}
\end{equation*}
$$

Types of Regression (contd.)

$\|w\|_{2}^{2}$

- Ridge Regression: A shrinkage parameter (regularization parameter) is added in the error function to reduce discrepancies due to variance
- Logistic Regression: Models conditional probability of dependent variable given independent variables and is extensively used in classification tasks

$$
\begin{equation*}
y \in\{0,1\} \& f(\phi(\mathbf{x}), \mathbf{w})=\log \frac{\operatorname{Pr}(\mathbf{y} \mid \mathbf{x})}{1-\operatorname{Pr}(\mathbf{y} \mid \mathbf{x})}=b+\mathbf{w}^{T} * \phi(\mathbf{x}) \tag{5}
\end{equation*}
$$

- Lasso regression, Stepwise regression and several others

Least Square Solution

- Form of $E()$ should lead to accuracy and tractability
- The squared loss is a commonly used error/loss function. It is the sum of squares of the differences between the actual value and the predicted value

$$
\begin{align*}
& E(f, \mathcal{D})=\sum_{j=1}^{m}\left(f\left(x_{j}\right)-y_{j}\right)^{2} \tag{6}\\
& f(x)=\omega^{\top} \phi(x)+b
\end{align*}
$$

- The least square solution for linear regression is obtained as

- The minimum value of the squared loss is zero
- If zero were attained at \mathbf{w}^{*}, we would have

$$
\Phi \omega^{*}=y
$$

- The minimum value of the squared loss is zero
- If zero were attained at \mathbf{w}^{*}, we would have $\forall u, \phi^{T}\left(x_{u}\right) \mathbf{w}^{*}=\mathbf{y}_{\mathbf{u}}$, or equivalently $\underbrace{\phi \mathbf{w}^{*}}=\mathbf{y}$, where

$$
\phi=\left[\begin{array}{ccc}
\phi_{1}\left(x_{1}\right) & \ldots & \phi_{p}\left(x_{1}\right) \\
\ldots & \ldots & \ldots \\
\phi_{1}\left(x_{m}\right) & \ldots & \phi_{p}\left(x_{m}\right)
\end{array}\right]
$$

and

$$
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
\ldots \\
y_{m}
\end{array}\right]
$$

- It has a solution if \mathbf{y} is in the column space (the subspace of R^{n} formed by the column vectors) of ϕ
- The minimum value of the squared loss is zero
- If zero were NOT attainable at \mathbf{w}^{*}, what can be done?
when?
ϕ is not full column rank \Rightarrow () Because $n>m$
(too many relevant attributes)
(2) Redundancy in ϕ

Geometric Interpretation of Leasty Square Solution

- Let \mathbf{y}^{*} be a solution in the column space of ϕ
- The least squares solution is such that the distance between \mathbf{y}^{*} and \mathbf{y} is minimized
- Therefore.

Geometric Interpretation of Least Square Solution

- Let \mathbf{y}^{*} be a solution in the column space of ϕ
- The least squares solution is such that the distance between \mathbf{y}^{*} and \mathbf{y} is minimized
- Therefore, the line joining \mathbf{y}^{*} to y should be orthogonal to the column space

$$
\begin{gather*}
\phi \mathbf{w}=\mathbf{y}^{*} \tag{8}\\
\left(\mathbf{y}-\mathbf{y}^{*}\right)^{\mathbf{T}} \phi=\mathbf{0} \tag{9}\\
\left(\mathbf{y}^{*}\right)^{\mathbf{T}} \phi=(\mathbf{y})^{\mathbf{T}} \phi
\end{gather*}
$$

Recap: $y^{*} \in C(\phi) \cdots$ Let $y^{\prime}=\phi \omega$

$$
\begin{align*}
& (\phi \mathbf{w})^{\mathbf{T}} \phi=\mathbf{y}^{\mathbf{T}} \phi \tag{11}\\
& \mathbf{w}^{\mathbf{T}} \phi^{\mathbf{T}} \phi=\mathbf{y}^{\mathbf{T}} \phi \tag{12}
\end{align*}
$$

- Here $\phi^{T} \phi$ is invertible only if ϕ has full column rank

Proof?

Theorem : $\phi^{\top} \phi$ is invertible if and only if ϕ is full column rank Proof :
Given that ϕ has full column rank and hence columns are linearly independent, we have that $\phi \mathbf{x}=\mathbf{0} \Rightarrow \mathbf{x}=\mathbf{0}$
Assume on the contrary that $\phi^{T} \phi$ is non invertible. Then $\exists \mathbf{x} \neq \mathbf{0}$ such that $\phi^{T} \phi \mathbf{x}=\mathbf{0}$

$$
\begin{aligned}
& \text { le } \phi^{T} \phi \text { is sot full roistcolumn } \\
& \text { rank. } \\
& \Rightarrow \mathrm{x}^{\mathbf{T}} \phi^{\mathbf{T}} \phi \mathrm{x}=\mathbf{0} \\
& \Rightarrow(\phi \mathbf{x})^{\mathbf{T}} \phi \mathbf{x}=\mathbf{0} \Rightarrow\|\phi x\|_{2}^{2}=0 \\
& \Rightarrow \phi \mathbf{x}=0
\end{aligned}
$$

This is a contradiction. Hence $\phi^{T} \phi$ is invertible if ϕ is full column rank
If $\phi^{T} \phi$ is invertible then $\phi \mathbf{x}=\mathbf{0}$ implies $\left(\phi^{T} \phi \mathbf{x}\right)=\mathbf{0}$, which in turn implies $\mathbf{x}=\mathbf{0}$, This implies ϕ has full column rank if $\phi^{T} \phi$ is invertible. Hence, theorem proved

if $\left(\phi^{\top} \phi\right)^{-1}$
exists
then
$\omega^{*}=\left(\phi^{\top} \phi\right)^{-1} \phi^{\top} y$

Figure: Least square solution \mathbf{y}^{*} is the orthogonal projection of y onto column space of ϕ

What is Next?

- Some more questions on the Least Square Linear Regression Model
- More generally: How to minimize a function?
- Level Curves and Surfaces
- Gradient Vector
- Directional Derivative
- Hyperplane
- Tangential Hyperplane

- Gradient Descent Algorithm

