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Lecture 3 - Regression
Instructor: Prof. Ganesh Ramakrishnan
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The Simplest ML Problem: Least Square
Regression

Curve Fitting: Motivation
▶ Error measurement
▶ Minimizing Error

Method of Least Squares
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Curve Fitting: Motivation

Example scenarios:
▶ Prices of house to be fitted as a function of the area of the

house
▶ Temperature of a place to be fitted as a function of its latitude

and longitude and time of the year
▶ Stock Price (or BSE/Nifty value) to be fitted as a function of

Company Earnings
▶ Height of students to be fitted as a function of their weight

One or more observations/parameters in the data are expected
to represent the output in the future
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Higher you go, the more expensive the house!
Consider the variation of price (in $) of house with variations in
its height (in m) above the ground level
These are specified as coordinates of the 8 points:
(x1, y1), . . . , (x8, y8)
Desired: Find a pattern or curve that characterizes the price as a
function of the height

Figure: Price of house vs. its height - for illustration purpose onlyJuly 25, 2016 4 / 30
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Errors and Causes

(Observable) Data is generally collected through measurements
or surveys

▶ Surveys can have random human errors
▶ Measurements are subject to imprecision of the measuring or

recording instrument
▶ Outliers due to variability in the measurement or due to some

experimental error;
Robustness to Errors: Minimize the effect of error in predicted
model
Data cleansing: Outlier handling in a pre-processing step

July 25, 2016 5 / 30



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Curve Fitting: The Process

Curve fitting is the process of constructing a curve, or
mathematical function, that has the best fit to a series of data
points, possibly subject to constraints. - Wikipedia

Need quantitative criteria to find the best fit
Error function E : curve f × dataset D −→ ℜ
Error function must capture the deviation of prediction from
expected value
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Curve Fitting: The Process

Curve fitting is the process of constructing a curve, or
mathematical function, that has the best fit to a series of data
points, possibly subject to constraints. - Wikipedia
Need quantitative criteria to find the best fit
Error function E : curve f × dataset D −→ ℜ
Error function must capture the deviation of prediction from
expected value
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Example
Consider the two candidate prediction curves in blue and red
respectively respectively. Which is the better fit?

Figure: Price of house vs. its height - for illustration purpose only
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Question

What are some options for error function E(f,D) that measure the
deviation of prediction from expected value?
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Examples of E

∑
D

f(xi)− yi∑
D

|f(xi)− yi|∑
D
(f(xi)− yi)

2

∑
D
(f(xi)− yi)

3

and many more
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Question

Which choice F do you think can give us best fit curve and why?
Hint: Think of these errors as distances.
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Squared Error

∑
D
(f(xi)− yi)

2

One best fit curve corresponds to f that minimizes the above
function. It..

1 Is continuous and differentiable
2 Can be visualized as square of Euclidean distance between

predicted and observed values
Mathematical optimization of this function: Topic of following
lectures.
This is the Method of least squares
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Regression, More Formally

Formal Definition
Types of Regression
Geometric Interpretation of least square solution

Linear Regression as a canonical example
Optimization (Formally deriving least Square Solution)
Regularization (Ridge Regression, Lasso), Bayesian
Interpretation (Bayesian Linear Regression)
Non-parametric estimation (Local linear regression),
Non-linearity through Kernels (Support Vector Regression)
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Linear Regression with Illustration
Regression is about learning to predict a set of output variables
(dependent variables) as a function of a set of input variables
(independent variables)
Example

▶ A company wants to determine how much it should spend on
T.V commercials to increase sales to a desired level y∗

▶ Basis?

It has previous observations of the form <xi,yi>,
⋆ xi is an instance of money spent on advertisements and yi was

the corresponding observed sale figure
▶ Suppose the observations support the following linear

approximation
y = β0 + β1 ∗ x (1)

Then x∗ = y∗−β0

β1
can be used to determine the money to be

spent
Estimation for Regression: Determine appropriate value for β0 and
β1 from the past observations
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Linear Regression with Illustration
Regression is about learning to predict a set of output variables
(dependent variables) as a function of a set of input variables
(independent variables)
Example

▶ A company wants to determine how much it should spend on
T.V commercials to increase sales to a desired level y∗

▶ Basis? It has previous observations of the form <xi,yi>,
⋆ xi is an instance of money spent on advertisements and yi was

the corresponding observed sale figure

▶ Suppose the observations support the following linear
approximation

y = β0 + β1 ∗ x (1)
Then x∗ = y∗−β0

β1
can be used to determine the money to be

spent
Estimation for Regression: Determine appropriate value for β0 and
β1 from the past observations
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Linear Regression with Illustration
Regression is about learning to predict a set of output variables
(dependent variables) as a function of a set of input variables
(independent variables)
Example

▶ A company wants to determine how much it should spend on
T.V commercials to increase sales to a desired level y∗

▶ Basis? It has previous observations of the form <xi,yi>,
⋆ xi is an instance of money spent on advertisements and yi was

the corresponding observed sale figure
▶ Suppose the observations support the following linear

approximation
y = β0 + β1 ∗ x (1)

Then x∗ = y∗−β0

β1
can be used to determine the money to be

spent
Estimation for Regression: Determine appropriate value for β0 and
β1 from the past observations
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Linear Regression with Illustration

Figure: Linear regression on T.V advertising vs sales figure
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What will it mean to have sales as a non-linear
function of investment in advertising?
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Basic Notation
Data set: D =< x1,y1 >, .., < xm,ym >

- Notation (used throughout the course)
- m = number of training examples
- x′s = input/independent variables
- y′s = output/dependent/‘target’ variables
- (x, y) - a single training example
- (xj, yj) - specific example (jth training example)

- j is an index into the training set

ϕi’s are the attribute/basis functions, and let

ϕ =


ϕ1(x1) ϕ2(x1) ...... ϕp(x1)

.

.
ϕ1(xm) ϕ2(xm) ...... ϕp(xm)

 (2)

y =

 y1
.

ym

 (3)
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Formal Definition

General Regression problem: Determine a function f∗ such
that f∗(x) is the best predictor for y, with respect to D:

f∗ = argmin
f∈F

E(f,D)

Here, F denotes the class of functions over which the error
minimization is performed
Parametrized Regression problem: Need to determine
parameters w for the function f

(
ϕ(x),w

)
which minimize our

error function E
(
f(ϕ(x),w),D

)
w∗ = argmin

w

⟨
E
(
f(ϕ(x),w),D

)⟩
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Types of Regression

Classified based on the function class and error function
F is space of linear functions f(ϕ(x),w) = wTϕ(x) + b =⇒
Linear Regression

▶ Problem is then to determine w∗ such that,

w∗ = argmin
w

E(w,D) (4)
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Types of Regression (contd.)

Ridge Regression: A shrinkage parameter (regularization
parameter) is added in the error function to reduce discrepancies
due to variance
Logistic Regression: Models conditional probability of
dependent variable given independent variables and is extensively
used in classification tasks

f(ϕ(x),w) = log Pr(y|x)
1− Pr(y|x) = b + wT ∗ ϕ(x) (5)

Lasso regression, Stepwise regression and several others
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Least Square Solution

Form of E() should lead to accuracy and tractability
The squared loss is a commonly used error/loss function. It is
the sum of squares of the differences between the actual value
and the predicted value

E(f,D) =
m∑

j=1

(f(xj)− yj)
2 (6)

The least square solution for linear regression is obtained as

w∗ = argmin
w

m∑
j=1

(

p∑
i=1

(wiϕi(xj)− yj)
2) (7)
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The minimum value of the squared loss is zero
If zero were attained at w∗, we would have ....................
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The minimum value of the squared loss is zero
If zero were attained at w∗, we would have ∀u, ϕT(xu)w∗ = yu,
or equivalently ϕw∗ = y, where

ϕ =

ϕ1(x1) ... ϕp(x1)
... ... ...

ϕ1(xm) ... ϕp(xm)


and

y =

y1
...
ym


It has a solution if y is in the column space (the subspace of Rn

formed by the column vectors) of ϕ
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The minimum value of the squared loss is zero
If zero were NOT attainable at w∗, what can be done?
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Geometric Interpretation of Least Square Solution

Let y∗ be a solution in the column space of ϕ
The least squares solution is such that the distance between y∗

and y is minimized
Therefore............
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Geometric Interpretation of Least Square Solution

Let y∗ be a solution in the column space of ϕ
The least squares solution is such that the distance between y∗

and y is minimized
Therefore, the line joining y∗ to y should be orthogonal to the
column space

ϕw = y∗ (8)

(y − y∗)Tϕ = 0 (9)

(y∗)Tϕ = (y)Tϕ (10)
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(ϕw)Tϕ = yTϕ (11)

wTϕTϕ = yTϕ (12)

ϕTϕw = ϕTy (13)

w = (ϕTϕ)−1y (14)

Here ϕTϕ is invertible only if ϕ has full column rank
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Proof?
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Theorem : ϕTϕ is invertible if and only if ϕ is full column rank
Proof :
Given that ϕ has full column rank and hence columns are linearly
independent, we have that ϕx = 0 ⇒ x = 0
Assume on the contrary that ϕTϕ is non invertible. Then ∃x ̸= 0
such that ϕTϕx = 0

⇒ xTϕTϕx = 0
⇒ (ϕx)Tϕx = 0

⇒ ϕx = 0

This is a contradiction. Hence ϕTϕ is invertible if ϕ is full column
rank
If ϕTϕ is invertible then ϕx = 0 implies (ϕTϕx) = 0, which in turn
implies x = 0 , This implies ϕ has full column rank if ϕTϕ is
invertible. Hence, theorem proved
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Figure: Least square solution y∗ is the orthogonal projection of y onto
column space of ϕ
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What is Next?

Some more questions on the Least Square Linear Regression
Model
More generally: How to minimize a function?

▶ Level Curves and Surfaces
▶ Gradient Vector
▶ Directional Derivative
▶ Hyperplane
▶ Tangential Hyperplane

Gradient Descent Algorithm
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