Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan
Lecture 4 - Linear Regression - Probabilistic
Interpretation and Regularization



Recap: Linear Regression is not Naively Linear

@ Need to determine w for the linear function
f(x,w) =31 wioi(xj) = ¢w which minimizes our error
function E (f(x,w), D)

@ Owing to basis function ¢, “Linear Regression” is linear in w
but NOT in x (which could be arbitrarily non-linear)!
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$1(xm)  ¢2(Xm) ... ®n(Xm)
@ Least Squares error and corresponding estimates:

E* = mvjn E(w,D) = m“iln (WT¢T¢W - 2yT<Z>W + yTY> (2)

m n 2
w* = arg min E(w, D) = arg min Z (Z widi(xj) — yJ)

w j=1 \i=1



Recap: Geometric Interpretation of Least Square Solution

@ Let y* be a solution in the column space of ¢

@ The least squares solution is such that the distance between
y* and y is minimized

@ Therefore, the line joining y* to y should be orthogonal to the
column space of ¢ =

w=(¢"¢) oy (4)

@ Here ¢ T ¢ is invertible only if ¢ has full column rank



Building on questions on Least Squares Linear Regression

@ s there a probabilistic interpretation?
o Gaussian Error, Maximum Likelihood Estimate

@ Addressing overfitting
o Bayesian and Maximum Aposteriori Estimates, Regularization

© How to minimize the resultant and more complex error
functions?
o Level Curves and Surfaces, Gradient Vector, Directional
Derivative, Gradient Descent Algorithm, Convexity, Necessary
and Sufficient Conditions for Optimality



Probabilistic Modeling of Linear Regression

@ Linear Model: Y is a linear function of ¢(x), subject to a
random noise variable € which we believe is ‘mostly’ bounded
by some threshold o

Y =wl¢(x)+e
e ~ N(0,0?)

e Motivation: A(j,c?), has maximum entropy among all
real-valued distributions with a specified variance ¢

@ 3 — o rule: About 68% of values drawn from N (yu, 2) are
within one standard deviation o away from the mean pu; about
95% of the values lie within 20; and about 99.7% are within
30.
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Figure 1: 3 — o rule: About 68% of values drawn from A(u,0?) are
within one standard deviation o away from the mean p; about 95% of
the values lie within 20; and about 99.7% are within 30. Source:
https://en.wikipedia.org/wiki/Normal_distribution



https://en.wikipedia.org/wiki/Normal_distribution

Probabilistic Modeling of Linear Regression

@ Linear Model: Y is a linear function of ¢(x), subject to a
random noise variable € which we believe is ‘mostly’ around
some threshold o:

Y =wl¢(x)+e
e~ N(0,02%)

@ This allows for the Probabilistic model
P(yjlw,xj,0%) = N(w' ¢(x)),0?)

m
P(V|W7XJ7U2) = HP(yj|w,Xj,0'2)
j=1

e Another motivation: E[Y(w,x;)] =
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Estimating w: Maximum Likelihood

o If e ~ N(0,02) and y = wT¢(x) + € where w, ¢(x) € R™
then, given dataset D, find the most likely wi
o (U4

V2mo? 202

e From Probability of data to Likelihood of parameters:
Pr(D|w) = Pr(y|x,w) =

@ Recall: Pr(yj|x;,w) =
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e From Probability of data to Likelihood of parameters:
Pr(D|w) = Pr(y|x,w) =

@ Recall: Pr(yj|x;,w) =

N 7ol (v —wo(x)))?
I I

@ Maximum Likelihood Estimate
Wy = argmax Pr(D|w) = Pr(y|x,w) = L(w|D)
w



Optimization Trick

@ Optimization Trick: Optimal point is invariant under
monotonically increasing transformation (such as log)
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Optimization Trick

@ Optimization Trick: Optimal point is invariant under
monotonically increasing transformation (such as log)
e log L(w|D) = LL(W\D)

m

2
—Eln (2m0?) z; wTé(x;) — ;)
For a fixed o2

why = argmax LL(y1...ym|X1 ... Xm, W, 02)
m

T 2
= argmax Z (w' o(x;) — yj)
j=1
@ Note that this is same as the Least square solution!!



Building on questions on Least Squares Linear Regression

@ s there a probabilistic interpretation?
o Gaussian Error, Maximum Likelihood Estimate

@ Addressing overfitting
o Bayesian and Maximum Aposteriori Estimates, Regularization

© How to minimize the resultant and more complex error
functions?
o Level Curves and Surfaces, Gradient Vector, Directional
Derivative, Gradient Descent Algorithm, Convexity, Necessary
and Sufficient Conditions for Optimality



Redundant ¢ and Overfitting

Figure 2: Root Mean Squared (RMS) errors on sample train and
datasets as a function of the degree t of the polynomial being fit

@ Too many bends (t=9 onwards) in curve = high values of
/ - ’ .
some w;s. Try plotting values of w;'s using applet at
http://mste.illinois.edu/users/exner/java.f/leastsquares/#simulation

@ Train and test errors differ significantly



http://mste.illinois.edu/users/exner/java.f/leastsquares/#simulation

Bayesian Linear Regression

@ The Bayesian interpretation of probabilistic estimation is a
logical extension that enables reasoning with uncertainty but
in the light of some background belief

e Bayesian linear regression: A Bayesian alternative to
Maximum Likelihood least squares regression

o Continue with Normally distributed errors

@ Model the w using a prior distribution and use the posterior
over w as the result

@ Intuitive Prior:



Bayesian Linear Regression

@ The Bayesian interpretation of probabilistic estimation is a
logical extension that enables reasoning with uncertainty but
in the light of some background belief

e Bayesian linear regression: A Bayesian alternative to
Maximum Likelihood least squares regression

o Continue with Normally distributed errors

@ Model the w using a prior distribution and use the posterior
over w as the result

@ Intuitive Prior: Components of w should not become too
large!

@ Next: lllustration of Bayesian Estimation on a simple
Coin-tossing example



