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Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan

Lecture 5 - Bayesian Estimation and Bayesian
Linear Regression
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Recap: Least Squares, MLE and Regularization

If solution ϕw = y exists, then least squares estimate w∗ can
be obtained by solving this linear system

Additionally, if n = m then ϕ must be invertible and
w∗ = ϕ−1y

If y is NOT in the column space of ϕ, then the least squares
solution is obtained using the left-pseudoinverse of ϕ:

w∗ = (ϕTϕ)−1ϕTy (1)

The Maximum Likelihood estimate wMLE happens to be the
same as the least squares estimate w∗. That is, wMLE = w∗

Here ϕTϕ is invertible only if ϕ has full column rank

Bayesian Estimation and Regularization: (a) Encode prior
belief on w and (b) Develop probabilistic distributions on w∗
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Building on questions on Least Squares Linear Regression

1 Is there a probabilistic interpretation?

Gaussian Error, Maximum Likelihood Estimate

2 Addressing overfitting

Bayesian and Maximum Aposteriori Estimates, Regularization

3 How to minimize the resultant and more complex error
functions?

Level Curves and Surfaces, Gradient Vector, Directional
Derivative, Gradient Descent Algorithm, Convexity, Necessary
and Sufficient Conditions for Optimality
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Bayesian Linear Regression

The Bayesian interpretation of probabilistic estimation is a
logical extension that enables reasoning with uncertainty but
in the light of some background belief

Bayesian linear regression: A Bayesian alternative to
Maximum Likelihood least squares regression

Continue with Normally distributed errors

Model the w using a prior distribution and use the posterior
over w as the result

Intuitive Prior:

Components of w should not become too
large!

Next: Illustration of Bayesian Estimation on a simple
Coin-tossing example
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Bayesian Linear Regression

The Bayesian interpretation of probabilistic estimation is a
logical extension that enables reasoning with uncertainty but
in the light of some background belief

Bayesian linear regression: A Bayesian alternative to
Maximum Likelihood least squares regression

Continue with Normally distributed errors

Model the w using a prior distribution and use the posterior
over w as the result

Intuitive Prior: Components of w should not become too
large!

Next: Illustration of Bayesian Estimation on a simple
Coin-tossing example
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Illustration through a Simple Coin
Tossing Example:

Maximum Likelihood Estimation vs.
Bayesian Estimation
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Case Study:

Suresh likes to toss coins. One
day he decided to count the num-
ber of heads and tails in his coin
tosses. Here is what he found.
After tossing 1000 times (it took
him a hours, but he likes to toss
coins), he found that the coin
landed on heads 400 times and
tails 600 times. His reflection: If
I were to toss the coin once more
time, what is the probability that
I get a heads?
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Maximum Likelihood Estimation

We are tempted to say that the probability of Heads in a
subsequent toss is 400/1000 = 0.41.

But why?

This is motivated by our wanting to maximize the probability
of the occurance of the data we have. Or in other words, we
want a Maximum Likelihood Estimate.

1This raises an important point, you can never know the probability of the
coin giving a head, what you can give is only an estimate for it. So dont be
confused with 0.4 as the probability of getting a head, it is only an intelligent
guess
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Revisiting Likelihood

Let the observed data follow a distribution fθ, with θ being
the unknown parameter.

1 Coin tossing expt: θ is probability of heads occurring in any
given toss and corresponds to a bernoulli distribution.

2 Logistic regression: θ is basically w

Let X1,X2, ...,Xn be the set of random variables governing the
observation with a joint pdf/pmf denoted by:

fθ(x1, x2, ..., xn) = f (x1, x2, ..., xn|θ)
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Revisiting Likelihood: Continued

Given observed values X1 = x1,X2 = x2, ...,Xn = xn, the
likelihood of θ is the function

L(θ) = f (x1, x2, ..., xn|θ)

treated as a function of θ.

Thus, L(θ) is probability of observing the given data as a
function of θ.

The Maximum Likelihood Estimate (MLE) of θ is θ̂ that
maximises L(θ)

For an independent and identically distributed sample
X1,X2, . . . ,Xn, this means:

MLE (θ) : θ̂ = argmax
θ

n∏
i=1

f (xi |θ)
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MLE estimate for Coin Tossing

We restate Suresh’s problem as the MLE of the probability of
getting a head. This is the value of p which maximizes the
likelihood of observing 400 heads as outcomes.

p̂ = argmax
p

1000C400p
400(1− p)600

p̂ = 0.4 as we had intuitively guessed. In general, the value of
p which maximises the likelihood of observing h heads, given
n coin tosses is.

p̂ = argmax
p

nChp
h(1− p)n−h



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Bayesian Inference/Estimation
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Case Study:

Suresh now brings a newly minted coin to toss. He believes that
the coin is fair and heads and tails are equally likely outcomes
(since the coin is not worn out). Now like always he flips the coin
4 times, and finds out that heads appeared all the 4 times.

1 Is the MLE estimate p̂ = 1 intuitive? Is tails improbable?

2 Is there a way that Suresh could update his belief about the
coin.
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Bayesian Inference

H: One of few competing hypotheses whose probability may
be affected by observed data.

Pr(H): The (prior) probability of H before data D is observed.
This indicates one’s previous belief in the hypothesis.

The evidence D: New data that were not used in computing
the prior probability

p(H | D) ∝ p(D | H) p(H)
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Conjugate Prior

Let D | H follow a distribution d1 and H follow a distribution d2.
The distribution d2 is the conjugate prior of d1 if the distribution
of Pr(H | D) follows the distribution d2.
Some Examples:

1 Bernoulli & Binomial - Beta

2 Geometric - Beta

3 Categorical - Dirichlet

4 Multinomial - Dirichlet

5 Poisson - Gamma

6 Normal - Inverse Gamma
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The Beta Conjugate Prior for Bernoulli/Binomial

Let D | H follow a distribution Ber(p) (p is probability of heads)

and p follow a distribution Beta(p;α, β) ∼ p(α−1)(1−p)(β−1)

B(α,β) ,

1 The beta normalization function:

B(α, β) =

∫ 1

p=0
p(α−1)(1− p)(β−1)dp =

Γ(α)Γ(β)

Γ(α+ β)
, where Γ(.)

behaves like the factorial function: Γ(n) = (n − 1)! if n ∈ Z+

2 Pr(H | D) = Pr(p | D) = Pr(D|p) Pr(p)∫
q
Pr(D | q) Pr(q)

=
nChp

h(1−p)n−h Γ(α+β)
Γ(α)Γ(β)

p(α−1)(1−p)(β−1)∫
q

nChq
h(1− q)n−h Γ(α+ β)

Γ(α)Γ(β)
q(α−1)(1− q)(β−1)

∝ pα+h−1(1− p)β+n−h−1 ∼ Beta(p;α+ h, β + n − h)
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More on the Beta(α, β) distribution

1 EBeta(α,β)[p] =
α

α+β and argmax
p

Beta(p;α, β) =
α− 1

α+ β − 2
(the mode of the distribution)

2 Beta(1, 1) is the uniform distribution!

3 Is the conjugate prior pdf for the Bernoulli, binomial, negative
binomial and geometric distributions and has the following pdf

plot:
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The MAP Estimate for Bernoulli/Binoimal

Let D | H follow a distribution Ber(p) (p is probability of heads)

and p follow a distribution Beta(p;α, β) ∼ p(α−1)(1−p)(β−1)

B(α,β) ,

1 The Maximum Likelihood Estimate:

p̂ = argmax
p

nChp
h(1− p)n−h =

h

n

2 The Maximum a-Posterior (MAP) Estimate: The mode of the
posterior distribution
p̃ = argmax

H
Pr(H | D) = argmax

p
Pr(p | D)

= argmax
p

Beta(p;α+ h, β + n − h) =
α+ h − 1

α+ β + n − 2
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Case Study Continued

Coming back to the Suresh’s case study, he observed 4 heads on 4
tosses, his MLE is

p̂ = argmax
p

4C4p
4(1− p)0 = 1

If his prior on p was Beta(p; 3, 3), then his posterior will be
Beta(p; 3 + 4, 3 + 0) = Beta(p; 7, 3) and his MAP estimate will be

p̂ = argmax
p

Beta(p; 7, 3) =
7− 1

7 + 3− 2
= 0.75
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Prior Distribution for w for Linear Regression

y = wTϕ(x) + ε

ε ∼ N (0, σ2)

We saw that when we try to maximize log-likelihood we end
up with ŵMLE = (ϕTϕ)−1ϕT y

We can use a Prior distribution on w to avoid over-fitting

wi ∼ N (0, 1
λ)

(that is, each component wi is approximately bounded within
± 2√

λ
by the 3− σ rule)

Q1: How do deal with Bayesian Estimation for Gaussian
distribution?
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Conjugate Prior for (univariate) Gaussian

We will temporarily generalize the discussion with x taking
the place of ε and µ taking the place of wi

Let Pr(X ) ∼ N (µ, σ2) and let the data D = x1...xm

µMLE = 1
m

m∑
i=1

xi and σMLE = 1
m

m∑
i=1

(xi − µ)2

The conjugate prior for the (univariate) normally distributed
random variable X in the case that σ2 is not a random
variable is
Pr(µ) = N (µ0, σ

2
0), And the posterior is?

Answer: Pr(µ|x1...xm) = N (µm, σ
2
m) such that

µm = (
σ2

mσ2
0 + σ2

µ0) + (
mσ2

0

mσ2
0 + σ2

µ̂ML)

1

σ2
m

=
1

σ2
0

+
m

σ2
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Conjugate Prior for (univariate) Gaussian

We will temporarily generalize the discussion with x taking
the place of ε and µ taking the place of wi

Let Pr(X ) ∼ N (µ, σ2) and let the data D = x1...xm

µMLE = 1
m

m∑
i=1

xi and σMLE = 1
m

m∑
i=1

(xi − µ)2

The conjugate prior for the (univariate) normally distributed
random variable X in the case that σ2 is not a random
variable is
Pr(µ) = N (µ0, σ

2
0), And the posterior is?

Answer: Pr(µ|x1...xm) = N (µm, σ
2
m) such that

µm = (
σ2

mσ2
0 + σ2

µ0) + (
mσ2

0

mσ2
0 + σ2

µ̂ML)

1

σ2
m

=
1

σ2
0

+
m

σ2
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Conjugate Prior for (univariate) Gaussian

We will temporarily generalize the discussion with x taking
the place of ε and µ taking the place of wi

Let Pr(X ) ∼ N (µ, σ2) and let the data D = x1...xm

µMLE = 1
m

m∑
i=1

xi and σMLE = 1
m

m∑
i=1

(xi − µ)2

The conjugate prior for the (univariate) normally distributed
random variable X in the case that σ2 is not a random
variable is
Pr(µ) = N (µ0, σ

2
0), And the posterior is?

Answer: Pr(µ|x1...xm) = N (µm, σ
2
m) such that

µm = (
σ2

mσ2
0 + σ2

µ0) + (
mσ2

0

mσ2
0 + σ2

µ̂ML)

1

σ2
m

=
1

σ2
0

+
m

σ2
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Conjugate Prior for (univariate) Gaussian

We will temporarily generalize the discussion with x taking
the place of ε and µ taking the place of wi

Let Pr(X ) ∼ N (µ, σ2) and let the data D = x1...xm

µMLE = 1
m

m∑
i=1

xi and σMLE = 1
m

m∑
i=1

(xi − µ)2

The conjugate prior for the (univariate) normally distributed
random variable X in the case that σ2 is not a random
variable is
Pr(µ) = N (µ0, σ

2
0), And the posterior is?

Answer: Pr(µ|x1...xm) = N (µm, σ
2
m) such that

µm = (
σ2

mσ2
0 + σ2

µ0) + (
mσ2

0

mσ2
0 + σ2

µ̂ML)

1

σ2
m

=
1

σ2
0

+
m
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