Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan
Lecture 4 - Linear Regression - Bayesian Inference
and Regularization



Building on questions on Least Squares Linear Regression

@ s there a probabilistic interpretation?
o Gaussian Error, Maximum Likelihood Estimate

@ Addressing overfitting
o Bayesian and Maximum Aposteriori Estimates, Regularization

© How to minimize the resultant and more complex error
functions?
o Level Curves and Surfaces, Gradient Vector, Directional
Derivative, Gradient Descent Algorithm, Convexity, Necessary
and Sufficient Conditions for Optimality



Recap: Bayesian Inference with Coin Tossing

Let D | H follow a distribution Ber(p) (p is probability of heads)
and p follow a distribution Beta(p; a, 3) ~ %’
@ The Maximum Likelihood Estimate:

p = argmax ”Chph(l — p)”_h =
P

@ The Posterior Distribution:
Pr(p| D) = Beta(p;«+ h,5+ n— h)
© The Maximum a-Posterior (MAP) Estimate: The mode of the
posterior distribution
p = argmax Pr(H | D) = argmaxPr(p | D)
H P
a+h—-1

= argmax Beta(p;a+h,f+n—h) = —————
gmax (pia+ h, 3 ) P S



Intuition for Bayesian Linear Regression

@ The Bayesian interpretation of probabilistic estimation is a
logical extension that enables reasoning with uncertainty but
in the light of some background belief

o Bayesian linear regression: A Bayesian alternative to
Maximum Likelihood least squares regression

@ Continue with Normally distributed errors

@ Model the w using a prior distribution and use the posterior
over w as the result

@ Intuitive Prior: Components of w should not become too
large!



Prior Distribution for w for Linear Regression

y=wlo(x)+e
e~ N(0,02%)

@ We saw that when we try to maximize log-likelihood we end
up with Wy e = (¢7¢) 19Ty
@ We can use a Prior distribution on w to avoid over-fitting
w; ~ N (0, %)
Each component w; is approximately bounded within j:%. A
is also called the precision of the Gaussian

@ Q1: How do deal with Bayesian Estimation for Gaussian
distribution?



Conjugate Prior for (univariate) Gaussian

@ We will temporarily generalize the discussion with x taking
the place of € and p taking the place of w;



Conjugate Prior for (univariate) Gaussian

@ We will temporarily generalize the discussion with x taking
the place of € and p taking the place of w;

o Let Pr(X) ~ N (u,0?) and let the data D = xy..
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@ UMLE = ™ X and OMLE — ™ ,UMLE
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@ Suppose you are told that the conjugate prior for the
(univariate) normally distributed random variable X in the
case that 2 is not a random variable is
Pr(u) = N(io,03). Then the posterior is?



Conjugate Prior for (univariate) Gaussian

We will temporarily generalize the discussion with x taking
the place of € and p taking the place of w;

Let Pr(X) ~ N(p1,02) and let the data D = x;..

m
1 2 1
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Suppose you are told that the conjugate prior for the
(univariate) normally distributed random variable X in the
case that 2 is not a random variable is

Pr(u) = N(io,03). Then the posterior is?

o Answer: Pr(u|x1...xm) = N (im,02,) such that jim, = ...... and

Helpful tip: Product of Gaussians is always a Gaussian



Detailed derivation

2
2mog 207
1 _ _ 2
Pr(xi|u; 0?) = Wexp( (é 2,u) >




Detailed derivation (contd.)

Our reference equality:

<2 22 n)? = MZZLO)> = exp (;(M—Mm)2>:

m

Matching coefhaents of u?, we get



Detailed derivation (contd.)

Our reference equality:

<2 22 n)? = MZZLO)> = exp (;(M—Mm)2>:

Matching coefhaents of u?, we get
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Detailed derivation (contd.)

Our reference equality:

exp <2 - Z p)? — Mng)> = exp (2;(# — um)2>,

Matching coefhaents of u?, we get

2 2 1 m

B (m oy 1 = 1

22 ~ 2 (a2+ag):>02 _US+‘72
m

Matching coefficients of 1, we get



Detailed derivation (contd.)

Our reference equality:

2 (1 — po) _ -1 2
exp <2 22 22) = exp (ztrzn(/i_lim) >
Matching coefhaents of u?, we get
2 2 1 1 1 m
2= 2 Gt ) = r =t
Matching coefficients of 1, we get
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Detailed derivation (contd.)

Our reference equality:

2 (b —po) ) _ -1 2
exp <2 22 22) = exp (M(M_Mm) >
Matching coefhaents of u?, we get

2 2 1 m
B (m oy 1 = 1
22 ~ 2 (a2+ag):>02 _US+‘72

m

Matching coefficients of 1, we get
2 i X
Yin — o (255 1+ 28) = i = 02, (E52 4 ) or

%
L = Ur2n (mu/m 4 #0) =
%



Detailed derivation (contd.)

Our reference equality:
2 (1 — po) _ -1 2
exp <2 22 22) = exp (M(M_Mm) >

Matching coefhaents of u?, we get

2 2 1 1 m
—KW o —pt(m oy 1 [
202 2(a2+ag):>02_03+02

m

Matching coefficients of 1, we get

2 m 2 f2ui=1"%0 2 _ ,n; i

Yo — (2555 4 28) = i = 02 (E55 4+ 8) or
2

2
pon = 0% ("R 1) = i = (o) + (0 )
o % mo3 + o2 mo3 + o2



Summary: Conjugate Prior for (univariate) Gaussian

o Let Pr(X) ~ N (u,0?) and let the data D = x;..
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@ Suppose you are told that the conjugate prior for the
(univariate) normally distributed random variable X in the
case that o2 is not a random variable is
Pr(u) = N(uo,03). Then the posterior is?

o Answer: Pr(pu|x1...xm) = N (im, 02, such that



Summary: Conjugate Prior for (univariate) Gaussian

o Let Pr(X) ~ N (u,0?) and let the data D = x;..

m m
_ 1 E 2 _ 1 E

@ Suppose you are told that the conjugate prior for the
(univariate) normally distributed random variable X in the
case that o2 is not a random variable is
Pr(u) = N(uo,03). Then the posterior is?

o Answer: Pr(pu|x1...xm) = N (im, 02, such that

2 2
o maoyg N
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Multivariate Normal Distribution and MLE estimate

@ The multivariate Gaussian (Normal) Distribution is:
N(x; 1, X) = 1 e ETNx—H) \yhen T € R4 s
(2m)2[x|2
positive-definite and i € R"




Summary for MAP estimation with Normal Distribution

@ Summary: With p ~ N (o, %) and x ~ N (u, 02)

1 m n 1
w2 2T 2
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such that p(x|D) ~ N (im,om?). Here n/o? is due to noise in
observation while 1/03 is due to uncertainity in u

@ For the Bayesian setting for the multivariate case with fixed X
X~ N(H? Z), n~ N(#Ov z0) & p(X‘D) ~ N(:u'm Zm)



Summary for MAP estimation with Normal Distribution

@ Summary: With p ~ N (o, %) and x ~ N (u, 02)

1 m n 1
w2 2T 2
o5, O o
Bm M Ho
D 7:“mle+ -
(oS op

such that p(x|D) ~ N (im,om?). Here n/o? is due to noise in
observation while 1/03 is due to uncertainity in u

@ For the Bayesian setting for the multivariate case with fixed X
X~ N(H? Z), n~ N(#Ov z0) & p(X‘D) ~ N(:u'm Zm)

yol=mrtyxt
z;wl,um = mE " fimie + O'o_l,u

@ We now conclude our discussion on Bayesian Linear Regression..



Prior Distribution for w for Linear Regression

y=wTg(x)+e
e ~ N(0,02)

@ We saw that when we try to maximize log-likelihood we end
up with Wye = (97 ¢) o7y
@ We can use a Prior distribution on w to avoid over-fitting
w; ~ N (0, %)
..Each component w; is approximately bounded within j:%.
A is also called the precision of the Gaussian

@ Q1: How do deal with Bayesian Estimation for Gaussian
distribution?

@ Q2: Then what is the (collective) prior distribution of the
n-dimensional vector w?



Multivariate Normal Distribution and MAP estimate

Q If w; ~ N(0, 1) then w ~ N(0, }/) where / is an nx n
identity matrix

@ = Thatis, w has a multivariate Gaussian distribution

Pr(w) = (2 ) 12wl with o =0. o= %I
A

© We will specifically consider Bayesian Estimation for
multivariate Gaussian (Normal) Distribution on w:

21 e 2||WH2
(%)2




Prior Distribution for w for Linear Regression

y=w'¢(x)+e
e~ N(0,02)

@ We saw that when we try to maximize log-likelihood we end
up with wyy g = (gZ)quS)_lquy
@ We can use a Prior distribution on w to avoid over-fitting
w; ~ N (0, %)
(that is, each component w; is approximately bounded within

j:\%\ by the 3 — o rule)

e We want to find P(w|D) = N (tm, Xm)
Invoking the Bayes Estimation results from before:



Prior Distribution for w for Linear Regression

y=w'¢(x)+e
e~ N(0,02)

@ We saw that when we try to maximize log-likelihood we end
up with wyy g = (gZ)quS)_lquy
@ We can use a Prior distribution on w to avoid over-fitting
w; ~ N (0, %)
(that is, each component w; is approximately bounded within

j:\%\ by the 3 — o rule)

e We want to find P(w|D) = N (tm, Xm)
Invoking the Bayes Estimation results from before:

olium =Eo uo + 6T y/o?
_ _ 1 -
yol=vt 4+ gqﬁ &



