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Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan

Lecture 4 - Linear Regression - Bayesian Inference
and Regularization
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Building on questions on Least Squares Linear Regression

1 Is there a probabilistic interpretation?

Gaussian Error, Maximum Likelihood Estimate

2 Addressing overfitting

Bayesian and Maximum Aposteriori Estimates, Regularization

3 How to minimize the resultant and more complex error
functions?

Level Curves and Surfaces, Gradient Vector, Directional
Derivative, Gradient Descent Algorithm, Convexity, Necessary
and Sufficient Conditions for Optimality
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Prior Distribution over w for Linear Regression

y = wTϕ(x) + ε

ε ∼ N (0, σ2)

We saw that when we try to maximize log-likelihood we end
up with ŵMLE = (ϕTϕ)−1ϕTy

We can use a Prior distribution on w to avoid over-fitting

wi ∼ N (0, 1
λ)

(that is, each component wi is approximately bounded within
± 3√

λ
by the 3− σ rule)

We want to find P(w|D) = N (µm,Σm)
Invoking the Bayes Estimation results from before:

Σ−1
m µm = Σ−1

0 µ0 + ϕTy/σ2

Σ−1
m = Σ−1

0 +
1

σ2
ϕTϕ
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Prior Distribution over w for Linear Regression

y = wTϕ(x) + ε

ε ∼ N (0, σ2)

We saw that when we try to maximize log-likelihood we end
up with ŵMLE = (ϕTϕ)−1ϕTy

We can use a Prior distribution on w to avoid over-fitting

wi ∼ N (0, 1
λ)

(that is, each component wi is approximately bounded within
± 3√

λ
by the 3− σ rule)

We want to find P(w|D) = N (µm,Σm)
Invoking the Bayes Estimation results from before:

Σ−1
m µm = Σ−1

0 µ0 + ϕTy/σ2

Σ−1
m = Σ−1

0 +
1

σ2
ϕTϕ
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Finding µm & Σm for w

Setting Σ0 =
1
λ I and µ0 = 0

Σ−1
m µm = ϕTy/σ2

Σ−1
m = λI + ϕTϕ/σ2

µm =
(λI + ϕTϕ/σ2)−1ϕTy

σ2

or
µm = (λσ2I + ϕTϕ)−1ϕTy
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MAP and Bayes Estimates

Pr (w | D) = N (w | µm,Σm)

The MAP estimate or mode under the Gaussian posterior is
the mode of the posterior ⇒

ŵMAP = argmax
w

N (w | µm,Σm) = µm

Similarly, the Bayes Estimate, or the expected value under
the Gaussian posterior is the mean ⇒

ŵBayes = EPr(w|D)[w] = EN (µm,Σm)[w] = µm

Summarily:

µMAP = µBayes = µm = (λσ2I + ϕTϕ)−1ϕTy

Σ−1
m = λI +

ϕTϕ

σ2
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From Bayesian Estimates to (Pure) Bayesian Prediction

Point? p(x |D)

MLE θ̂MLE = argmaxθ LL(D|θ) p(x |θMLE )

Bayes Estimator θ̂B = Ep(θ|D)E [θ] p(x |θB)
MAP θ̂MAP = argmaxθ p(θ|D) p(x |θMAP)

Pure Bayesian p(θ|D) =
p(D|θ)p(θ)∫
p(D|θ)p(θ)dθ

p(D|θ) =
m∏
i=1

p(xi |θ)

p(x |D) =

∫
θ
p(x |θ)p(θ|D)dθ

where θ is the parameter
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Predictive distribution for linear Regression

ŵMAP helps avoid overfitting as it takes regularization into
account

But we miss the modeling of uncertainty when we consider
only ŵMAP

Eg: While predicting diagnostic results on a new patient x ,
along with the value y , we would also like to know the
uncertainty of the prediction Pr(y | x ,D). Recall that
y = wTϕ(x) + ε and ε ∼ N (0, σ2)

Pr(y | x,D) = Pr(y | x, < x1, y1 > ... < xm, ym >)
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Pure Bayesian Regression Summarized

By definition, regression is about finding
(y | x, < x1, y1 > ... < xm, ym >)

By Bayes Rule

Pr(y | x,D) = Pr(y | x, < x1, y1 > ... < xm, ym >)

=

∫
w
Pr(y |w; x) Pr(w | D)dw

∼ N
(
µT
mϕ(x), σ

2 + ϕT (x)Σmϕ(x)
)

where

y = wTϕ(x) + ε and ε ∼ N (0, σ2)

w ∼ N (0, αI ) and w | D ∼ N (µm,Σm)

µm = (λσ2I + ϕTϕ)−1ϕTy and Σ−1
m = λI + ϕTϕ/σ2

Finally y ∼ N (µT
mϕ(x), ϕ

T (x)Σmϕ(x))
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Penalized Regularized Least Squares Regression

The Bayes and MAP estimates for Linear Regression coincide
with Regularized Ridge Regression

wRidge = argmin
w

||ϕw − y||22 + λσ2||w||22

Intuition: To discourage redundancy and/or stop coefficients
of w from becoming too large in magnitude, add a penalty to
the error term used to estimate parameters of the model.

The general Penalized Regularized L.S Problem:

wReg = argmin
w

||ϕw − y||22 + λΩ(w)

Ω(w) = ||w||22 ⇒ Ridge Regression
Ω(w) = ||w||1 ⇒ Lasso
Ω(w) = ||w||0 ⇒ Support-based penalty

Some Ω(w) correspond to priors that can be expressed in
close form. Some give good working solutions. However, for
mathematical convenience, some norms are easier to handle



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Constrained Regularized Least Squares Regression

Intuition: To discourage redundancy and/or stop coefficients
of w from becoming too large in magnitude, constrain the
error minimizing estimate using a penalty

The general Constrained Regularized L.S. Problem:

wReg = argmin
w

||ϕw − y||22

such that Ω(w) ≤ θ

Claim: For any Penalized formulation with a particular λ,
there exists a corresponding Constrained formulation with a
corresponding θ

Ω(w) = ||w||22 ⇒ Ridge Regression
Ω(w) = ||w||1 ⇒ Lasso
Ω(w) = ||w||0 ⇒ Support-based penalty

Proof of Equivalence: Requires tools of
Optimization/duality
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Polynomial regression

Consider a degree 3
polynomial regression model
as shown in the figure

Each bend in the curve
corresponds to increase in
∥w∥
Eigen values of (ϕ⊤ϕ+ λI )
are indicative of curvature.
Increasing λ reduces the
curvature
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Do Closed-form solutions Always Exist?

Linear regression and Ridge regression both have closed-form
solutions

For linear regression,

w∗ = (ϕ⊤ϕ)−1ϕ⊤y

For ridge regression,

w∗ = (ϕ⊤ϕ+ λI )−1ϕ⊤y

(for linear regression, λ = 0)

What about optimizing the formulations
(constrained/penalized) of Lasso (L1 norm)? And
support-based penalty (L0 norm)?: Also requires tools of
Optimization/duality
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Why is Lasso Interesting?
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Support Vector Regression
One more formulation before we look at Tools of

Optimization/duality
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Support Vector Regression (SVR)

Any point in the band (of ϵ) is not penalized. Thus the loss
function is known as ϵ-insensitive loss

Any point outside the band is penalized, and has slackness ξi
or ξ∗i
The SVR model curve may not pass through any training
point
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The tolerance ϵ is fixed

It is desirable that ∀i :
yi − w⊤ϕ(xi )− b ≤ ϵ+ ξi
b + w⊤ϕ(xi )− yi ≤ ϵ+ ξ∗i
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SVR objective

1-norm regularized:

minw ,b,ξi ,ξ∗i
1
2 ∥w∥2 + C

∑
i (ξi + ξ∗i )

s.t. ∀i ,
yi − w⊤ϕ(xi )− b ≤ ϵ+ ξi ,
b + w⊤ϕ(xi )− yi ≤ ϵ+ ξ∗i ,
ξi , ξ

∗
i ≥ 0

2-norm regularized:

minw ,b,ξi ,ξ∗i
1
2 ∥w∥2 + C

∑
i (ξ

2
i + ξ∗2i )

s.t. ∀i ,
yi − w⊤ϕ(xi )− b ≤ ϵ+ ξi ,
b + w⊤ϕ(xi )− yi ≤ ϵ+ ξ∗i
Here, the constraints ξi , ξ

∗
i ≥ 0 are not necessary
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Claim:
Error obtained on training data after minimizing ridge
regression ≥ error obtained on training data after minimizing
linear regression

Goal:
Do well on unseen (test) data as well. Therefore, high training
error might be acceptable if test error can be lower
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Solving Least Square Linear Regression Model

Intuitively: Minimize by setting derivative (gradient) to 0 and
find closed form solution.

For most optimization problems, finding closed form solution
is difficult

Even for linear regression (for which closed form solution
exists), are there alternative methods?

Eg: Consider, y = ϕw,where ϕ is a matrix with full column
rank, the least squares solution, w∗ = (ϕTϕ)−1ϕTy . Now,
imagine that ϕ is a very large matrix. with say, 100,000
columns and 1,000,000 rows. Computation of closed form
solution might be challenging.

How about an iterative method?
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Level curves and surfaces

A level curve of a function f(x) is defined as a curve along
which the value of the function remains unchanged while we
change the value of its argument x.

Formally we can define a level curve as :

Lc(f) =

{
x|f(x) = c

}
(1)

where c is a constant.
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Level curves and surfaces

The image below is an example of different level curves for a
single function

Figure 1: 10 level curves for the function f(x1, x2) = x1ex2 (Figure 4.12
from https://www.cse.iitb.ac.in/~cs709/notes/

BasicsOfConvexOptimization.pdf)

https://www.cse.iitb.ac.in/~cs709/notes/BasicsOfConvexOptimization.pdf
https://www.cse.iitb.ac.in/~cs709/notes/BasicsOfConvexOptimization.pdf
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Directional Derivatives

Directional derivative: Rate at which the function changes at
a given point in a given direction

The directional derivative of a function f in the direction of a
unit vector v at a point x can be defined as :

Dv(f ) = lim
h→0

f (x+ hv)− f(x)

h
(2)

||v|| = 1 (3)
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Gradient Vector

Magnitude (euclidean norm) of gradient vector at any point
indicates maximum value of directional derivative at that point

Direction of gradient vector indicates direction of this
maximal directional derivative at that point.

The gradient vector of a function f at a point x is defined as:

∇fx∗ =


∂f (x)
∂x1
∂f (x)
∂x2
.
.

∂f (x)
∂xn

 ϵRn (4)
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Gradient Vector

Magnitude (euclidean norm) of gradient vector at any point
indicates maximum value of directional derivative at that point

The gradient vector of a function f at a point x is defined as:

∇fx∗ =


∂f (x)
∂x1
∂f (x)
∂x2
.
.

∂f (x)
∂xn

 ϵRn (5)

Thus, at the point of minimum of a differentiable minimization
objective (such as least squares for regression), ....
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Gradient Vector

The figure below gives an example of gradient vector

Figure 2: The level curves from Figure 1 along with the gradient vector
at (2, 0). Note that the gradient vector is perpenducular to the level
curve x1e

x2 = 2 at (2, 0)
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Hyperplanes

A hyperplane in an n-dimensional Euclidean space is a flat,
n-1 dimensional subset of that space that divides the space
into two disconnected parts.

Technically, a hyperplane is a set of points whose direction
w.r.t. a point p is orthogonal to a vector v.

Formally:

Hv,p =

{
q | (p− q)Tv = 0

}
(6)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Tangential Hyperplanes

There are two definitions of tangential hyperplane (THx∗) to level
surface (Lf (x∗)(f )) of f at x∗ :

Plane consisting of all tangent lines at x∗ to any parametric
curve c(t) on level surface.

Plane orthogonal to the gradient vector at x∗.

THx∗ =

{
p | (p− x∗)T∇f(x∗) = 0

}
(7)
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Gradient Descent Algorithm

Gradient descent is based on the observation that if the
multi-variable function F(x ) is defined and differentiable in a
neighborhood of a point a , then F(x ) decreases fastest if one
goes from a in the direction of the negative gradient of F at a ,i.e.
-∇ F(a ).
Therefore,

∆w(k) = − ∇E(w(k)) (8)

Hence,
w(k+1) = w(k) + 2t(k)(ϕTy − ϕTϕw(k)) (9)
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Gradient Descent Algorithm

Find starting point w(0)ϵD
∆wk = −∇ε(w(k))

Choose a step size t(k) > 0 using exact or backtracking ray
search.

Obtain w(k+1) = w(k) + t(k)∆w(k).

Set k = k + 1. until stopping criterion
(such as ∥∇ε(x(k+1)) ∥≤ ϵ) is satisfied
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Gradient Descent Algorithm

Exact line search algorithm to find t(k)

The line search approach first finds a descent direction along
which the objective function f will be reduced and then
computes a step size that determines how far x should move
along that direction.

In general,

t(k) = argmin
t

f
(
w(k+1)

)
(10)

Thus,

t(k) = argmin
t

(
w(k) + 2t

(
ϕTy − ϕTϕw(k)

))
(11)
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Example of Gradient Descent Algorithm

Figure 3: A red arrow originating at a point shows the direction of the
negative gradient at that point. Note that the (negative) gradient at a
point is orthogonal to the level curve going through that point. We see
that gradient descent leads us to the bottom of the bowl, that is, to the
point where the value of the function F is minimal. Sources: Wikipidea


