Introduction to Machine Learning - CS725 Instructor: Prof. Ganesh Ramakrishnan Lecture 8 - Support Vector Regression and Optimization Basics

Building on questions on Least Squares Linear Regression

- 1 Is there a probabilistic interpretation?
 - Gaussian Error, Maximum Likelihood Estimate
- Addressing overfitting
 - Bayesian and Maximum Aposteriori Estimates, Regularization,
 Support Vector Regression
- How to minimize the resultant and more complex error functions?
 - Level Curves and Surfaces, Gradient Vector, Directional Derivative, Gradient Descent Algorithm, Convexity, Necessary and Sufficient Conditions for Optimality

Support Vector Regression

One more formulation before we look at Tools of Optimization/duality

Support Vector Regression (SVR)

- Any point in the band (of ϵ) is not penalized. Thus the loss function is known as ϵ -insensitive loss
- Any point outside the band is penalized, and has slackness ξ_i or ξ_i^*
- The SVR model curve may not pass through any training point

E=0.5 14/w: Think of a setting in which no point will land up in the E-band

$$f(x) = \omega^{T} \phi(x) + b$$

$$\xi_{i}, \xi_{i}^{T}, \in \mathcal{D} = \left\{ (x_{i}, y_{i}) \right\}$$

- The tolerance ϵ is fixed
- It is desirable that $\forall i$:

Constraints?

Objective desired to be minimized?

Constraints First!

- @ પુરા જાર અંદ પ્રતિ છે. ક ر بادر مین تی فواهد ما خلی - الات yi > WTG (xi) + b [Zanumanises coses]
- The tolerance ε is fixed
- It is desirable that ∀i:

•
$$b + w^{\top} \phi(x_i) - y_i \leq \epsilon + \xi_i^*$$

$$\xi_i = \max(y_i - \omega^T \phi(x_i) - b - \epsilon_i 0)$$

SVR objective

• 1-norm Error, and
$$L_2$$
 regularized:

 $\frac{1}{2} \| \mathbf{w} \|_2^2 + C \left(\sum_{i=1}^{m} \xi_i + \xi_i^* \right)$
 $\mathbf{v}^{\mathsf{T}} \phi(\mathbf{x}_i) - \mathbf{b} \leq \mathbf{c} + \xi_i^*$
 $\mathbf{v}^{\mathsf{T}} \phi(\mathbf{x}_i) + \mathbf{b} - \mathbf{y}_i \leq \mathbf{c} + \xi_i^*$
 $\mathbf{v}^{\mathsf{T}} \phi(\mathbf{x}_i) + \mathbf{b} - \mathbf{y}_i \leq \mathbf{c} + \xi_i^*$

Ans to 02: Proof by contradiction. L Suppose 2:>04 2:>0 1 9; - ω φ(xi) -b < ε + &; 1) $\omega^{6}\phi(x_{i})+b-y_{i}\leq\varepsilon+\xi_{i}^{*}(2)$ Claim: 2=0 would also satisfy (2) Complet prof =) By selfing 2:=0, I can lower my error in Objective while Still satisfying and and and and another assumption that &:>0 &:>0 was an "optimal" solution!

SVR objective

- 1-norm Error, and L_2 regularized:
 - $\min_{w,b,\xi_i,\xi_i^*} \frac{1}{2} \|w\|^2 + C \sum_i (\xi_i + \xi_i^*)$ s.t. $\forall i$, $y_i - w^\top \phi(x_i) - b \le \epsilon + \xi_i$, $b + w^\top \phi(x_i) - y_i \le \epsilon + \xi_i^*$, $\xi_i, \xi_i^* \ge 0$
- 2-norm Error, and L_2 regularized:

SVR objective

- 1-norm Error, and L_2 regularized:
 - $\min_{w,b,\xi_i,\xi_i^*} \frac{1}{2} \|w\|^2 + C \sum_i (\xi_i + \xi_i^*)$ s.t. $\forall i$, $y_i - w^\top \phi(x_i) - b \le \epsilon + \xi_i$, $b + w^\top \phi(x_i) - y_i \le \epsilon + \xi_i^*$, $\xi_i, \xi_i^* \ge 0$
- 2-norm Error, and L₂ regularized:
 - $\min_{w,b,\xi_i,\xi_i^*} \frac{1}{2} \|w\|^2 + C \sum_i (\xi_i^2 + \xi_i^{*2})$ s.t. $\forall i$, $y_i - w^\top \phi(x_i) - b \le \epsilon + \xi_i$, $b + w^\top \phi(x_i) - y_i \le \epsilon + \xi_i^*$
 - Here, the constraints $\xi_i, \xi_i^* \geq 0$ are not necessary

Need for Optimization so far

Unconstrained (Penalized) Optimization:

$$\mathbf{w}_{\textit{Reg}} = \mathop{\arg\min}_{\mathbf{w}} \ ||\phi\mathbf{w} - \mathbf{y}||_2^2 + \Omega(\mathbf{w})$$

Constrained Optimization 1:

$$\mathbf{w}_{Reg} = \underset{\mathbf{w}}{\operatorname{arg \, min}} \ ||\phi \mathbf{w} - \mathbf{y}||_2^2$$
 such that $\Omega(\mathbf{w}) < \theta$

SVR • Constrained Optimization 2 (t = 1 or 2):

$$\underset{w,b,\xi_{i},\xi_{i}^{*}}{\arg\min} \frac{1}{2} \|w\|^{2} + C \sum_{i} (\xi_{i}^{t} + \xi_{i}^{*t})$$

s.t.
$$\forall i, y_i - w^\top \phi(x_i) - b \le \epsilon + \xi_i; b + w^\top \phi(x_i) - y_i \le \epsilon + \xi_i^*$$

- Equivalence: λ (Penalized) $\equiv \theta$ (Constrained)
- Duality: Dual of Support Vector Regression: Kernels, non-linear

Solving Unconstrained Minimization Problem

- Intuitively: Minimize by setting derivative (gradient) to 0 and hoping to find closed form solution.
- When is such a solution a global minimum?
- For most optimization problems, finding closed form solutions is difficult. Even for linear regression (for which closed form solution exists), are there alternative methods?
 - Eg: Consider, $\mathbf{y} = \phi \mathbf{w}$, where ϕ is a matrix with full column rank, the least squares solution, $\mathbf{w}^* = (\phi^T \phi)^{-1} \phi^T \mathbf{y}$. Now, imagine that ϕ is a very large matrix. with say, 100,000 columns and 1,000,000 rows. Computation of closed form solution might be challenging.
- How about iterative methods?