Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan
Lecture 10 - Optimization Foundations Applied to
Regression Formulations



Foundations: Necessary Condition 2

o Is V2f(w*) positive definite 7
ie. ¥x #0, is xT Vf(w*)x > 0? (A sufficient condition for
local minimum)
(Any positive definite matrix is also positive semi-definite)
(Cite : Section 3.12 & 3.12.1)!

V2f(w*) 207 + 2\ (1)
— x'V2f(w)x = 2x"(dTd + \)x (2)
— 2 ((cb + \/X/)x) "ox (3

~ 2 H(CD + \/_X/)XH2 >0 (4)
@ And with A =0, if & has full column rank ,
Ox=0 iff x=0 (5)
S x#£0, xTV2f(w*)x >0
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Example of linearly correlated features

@ Example where ® doesn’'t have a full column rank,

X1 X12 x12 xf’
2 2 3

b =
Xn x,2, x,2, xg
@ This is the simplest form of linear correlation of features, and
it is not at all desirable.
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Example of linearly correlated features

@ Example where ® doesn’'t have a full column rank,

X1 X12 xl2 xf’
X2 X22 X22 xg’

e (6)
Xn x,% x,% xg
@ This is the simplest form of linear correlation of features, and
it is not at all desirable.
@ Effect of a nonzero \ with such ® is that it tends to make the
Hessian more positive definite



Do Closed-form solutions Always Exist?

@ Linear regression and Ridge regression both have closed-form
solutions
o For linear regression,

wh = (dTo) o7y
o For ridge regression,
wh=(d o+ Aoy
(for linear regression, A = 0)

@ What about optimizing the formulations
(constrained/penalized) of Lasso (L1 norm)? And
support-based penalty (Lp norm)?: Also requires tools of
Optimization /duality



Gradient Descent Algorithm

Gradient descent is based on our%revious observation that if the
multivariate function F(x) is defined and differentiable in a
neighborhood of a point a , then F(x) decreases fastest if one
proceeds from a in the direction of the negative of the gradient of
F at a ,ie -V F(a).

Therefore,
Aw®) = — VE(w®) (7)
Hence Srep AwechoD

w1 — w4 2t(’k_)(¢Ty —oTow® — xwh) (8)
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Gradient Descent Algorithm

Find w=a-s3$" E(w)

Find starting point w(®eD
o Awk = —Ve(w®)

@ Choose a step size t(k) > 0 using exact or backtracking ray

search. X
o Obtain wkt1) = wk) 1 t() Awk), \ S’HOY?\‘%LU? —
@ Set k = k + 1. until stopping criterion \A"‘* o K <
(such as || Ve(gdk™D) ||< €) is satisfied”” ¢ahe™ QT
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Gradient Descent Algorithm

Exact line search algorithm to find t(¥)

@ The line search approach first finds a descent direction along
which the objective function f will be reduced and then
computes a step size that determines how far x should move
along that direction.

@ In general,
() = argmin f (w(k+1)> 9)
t

@ Thus,
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Gradient Descent Algorithm

Exact line search algorithm to find t(¥)

@ The line search approach first finds a descent direction along
which the objective function f will be reduced and then
computes a step size that determines how far x should move
along that direction.

@ In general,
() = argmin f (w(k+1)> 9)
t

@ Thus,

£  arg min (w(k) 12t (chy — oTgwk) — )\w(k)>> (10)
t

Tut 3, peib 2, §% O3 % 7



Example of Gradient Descent Algorithm

Figure 1: A red arrow originating at a point shows the direction of the
negative gradient at that point. Note that the (negative) gradient at a
point is orthogonal to the level curve going through that point. We see
that gradient descent leads us to the bottom of the bowl, that is, to the
point where the value of the function F is minimal. Source: Wikipidea



Constrained Least Squares Linear Regression

Find
w* = arg min||ow — y| s.t. |w]|, < ¢, (11)
w

where
1

i, = (3 wi?)? (12)

i=1

Claim: This is an equivalent reformulation of the penalized

Ie;s\t Squa"es'}‘W:y? /7$VR &£ ¢ dual
e oflva hoNS
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p-Norm level curves

‘ .
4 p=1(value=k)
- = “ p=2(value=k)
p=(value=k)

Figure 2: p-Norm curves for constant norm value and different p



Convex Optimization Problem

@ Formally, a convex optimization problem is an optimization
problem of the form

_ ) < ofE (- 9)5:[\'9

X minimize f(x (13)
subject to ¢ € C (14)
]
2———— where f is a convex function, C is a convex set, and x is the j
* 5 optimization variable. S pelo!
e-ﬂ(."o;jAn improved form of the above would be @ ext(} ’ab
pefo * Y eC
A minimize f(x) (15)
conve* hg(@cmw"- subject to gi(x) < 0, i=1,...m (16)
&\neas C hi(x) = 0,i=1,..,p (17)

where f is a convex function, g; are convex functions, and h;
are affine functions, and x is the vector of optimization

variables. lnear EJ i(,() “,b)“?' ,f(u.) \]¢w~ﬂl



Constrained convex problems

Q. How to solve constrained problems of the above-mentioned

type?
A. General problem format :
Minimize f(w) s.t. g'(w) <0 (18) C
ke
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