Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan
Lecture 10 - Optimization Foundations Applied to
Regression Formulations



Foundations: Necessary Condition 2

o Is V2f(w*) positive definite 7
ie. ¥x #0, is xT Vf(w*)x > 0? (A sufficient condition for
local minimum)
(Any positive definite matrix is also positive semi-definite)
(Cite : Section 3.12 & 3.12.1)!

V2f(w*) 2070 2\ (1)
— x'V2f(w)x = 2x"(dTd + \)x (2)
— 2 ((cb + ﬁ/)x) "ox (3

— 2 H(cb + \FA/)XHZ >0 (4)
@ And with A =0, if & has full column rank ,
Ox=0 iff x=0 (5)
S x#£0, xTV2F(wH)x >0
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Example of linearly correlated features

@ Example where ® doesn’t have a full column rank,

X1 X12 xl2 xf’
X2 X22 X22 xg’

¢ = : (6)
Xn x,% x,% xg

@ This is the simplest form of linear correlation of features, and

it is not at all desirable.
@ Effect of a nonzero A with such @ is that



Example of linearly correlated features

@ Example where ® doesn’t have a full column rank,

X1 X12 xl2 xf’
X2 x22 X22 xg’

o B, (6)
Xn x,% x,% xg

@ This is the simplest form of linear correlation of features, and
it is not at all desirable.

@ Effect of a nonzero A with such @ is that it tends to make the
Hessian more positive definite



Do Closed-form solutions Always Exist?

@ Linear regression and Ridge regression both have closed-form
solutions
o For linear regression,

wh = (dTo) o7y
e For ridge regression,
wh=(dTo+ ) ToTy
(for linear regression, A = 0)

@ What about optimizing the formulations
(constrained/penalized) of Lasso (L3 norm)? And
support-based penalty (Lo norm)?: Also requires tools of
Optimization/duality



Gradient Descent Algorithm

Gradient descent is based on our previous observation that if the
multivariate function F(x) is defined and differentiable in a
neighborhood of a point a , then F(x) decreases fastest if one
proceeds from a in the direction of the negative of the gradient of
F ata e -V F(a).
Therefore,

Aw®) = — VE(w®) (7)

Hence,

w1 — w4 2t (0 Ty — dTdw) — \wk) (8)



Gradient Descent Algorithm

Find starting point w(®eD
o Awk = —Ve(w®)
@ Choose a step size t(k) > 0 using exact or backtracking ray
search.
o Obtain wkt1) = wk) 1 t() Awk),
@ Set k = k + 1. until stopping criterion
(such as || Ve(w(k*1) ||< €) is satisfied



Gradient Descent Algorithm

Exact line search algorithm to find t(¥)

@ The line search approach first finds a descent direction along
which the objective function f will be reduced and then
computes a step size that determines how far x should move
along that direction.

@ In general,

() = argmin f (w(k+1)> (9)
t

@ Thus,



Gradient Descent Algorithm

Exact line search algorithm to find t(¥)

@ The line search approach first finds a descent direction along
which the objective function f will be reduced and then
computes a step size that determines how far x should move
along that direction.

@ In general,
() = argmin f (w(k+1)> (9)
t

@ Thus,

£  arg min (w(k) 42t <¢Ty — oTpw®) — )\w(k))> (10)
t



Example of Gradient Descent Algorithm

Figure 1: A red arrow originating at a point shows the direction of the
negative gradient at that point. Note that the (negative) gradient at a
point is orthogonal to the level curve going through that point. We see
that gradient descent leads us to the bottom of the bowl, that is, to the
point where the value of the function F is minimal. Source: Wikipidea



Constrained Least Squares Linear Regression

Find
w* = arg min||ow — y|? s.t. |wl|, <¢, (11)
w

where . .
Iwll, = (3 Iwil?)’ (12)
i=1

Claim: This is an equivalent reformulation of the penalized
least squares. Why?



p-Norm level curves

p=1(value=k)

p=2(value=k)
\ p=%(value=k)

Figure 2: p-Norm curves for constant norm value and different p




Convex Optimization Problem

@ Formally, a convex optimization problem is an optimization
problem of the form

minimize f(x) (13)
subject toc € C (14)

where f is a convex function, C is a convex set, and x is the
optimization variable.

@ An improved form of the above would be

minimize f(x) (15)
subject to gi(x) < 0,i=1,..m (16)
hi(x) = 0,i=1,..,p (17)

where f is a convex function, g; are convex functions, and h;
are affine functions, and x is the vector of optimization
variables.



Constrained convex problems

Q. How to solve constrained problems of the above-mentioned

type?
A. General problem format :
Minimize f(w) s.t. g(w) <0 (18)
A
gi(x) <0
f(x)=0
/ 2@ >0
Ve, ). if 105
f=103

F=102
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Constrained Convex Problems

@ At the point of optimality,

Either g(w*) <0 & Vf(w*)=0 (19)
Or g(w*)=0 & Vf(w")=aVgw") (20)

o If w* is on the boundary of g, i.e.,, g(w*) =0,
Vi(w*) =aVg(w") (21)

(Duality Theory) (Cite : Section 4.4, pg-72)2

2¢s709/notes/Basics0fConvexOptimization. pdf


 cs709/notes/BasicsOfConvexOptimization.pdf

Constrained Convex Problems

@ At the point of optimality,

Either g(w*) <0 & Vf(w*)=0 (19)
Or g(w*)=0 & Vf(w")=aVgw") (20)

o If w* is on the boundary of g, i.e.,, g(w*) =0,
Vi(w*) =aVg(w") (21)

(Duality Theory) (Cite : Section 4.4, pg-72)2

@ Intuition: If the above didn't hold, then we would have
Vi(w*) = a1 Vg(w*) + a2V g(w*), where by moving in
direction £V | g(w*), we remain on boundary g(w*) =0,
while decreasing/increasing value of f, which is not possible at
the point of optimality.

2¢s709/notes/Basics0fConvexOptimization. pdf
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"Regularized” Linear Regression

@ We limit the weights of the coefficients by putting a
constraint on size of the L2 norm of the weight vector

arg min(dw — Y) " (dw —Y)

2
Iwllz <¢

o The objective function, namely f(w) = (dw — Y)T(dw —Y)
is strictly convex. The constraint function, g(w) = ||wl3 — ¢,
is also convex.

e For convex g(w), the set {w|g(w) < 0}, is also convex.
(Why?)



Duality and KKT conditions

For a convex objective and constraint function, the minima, w*,
can satisfy one of the following two conditions:

Q g(w*) =0 and Vi(w*) = aVg(w*)
Q@ g(w*) <0and Vi(w*) =10



gi(x) <0
21(x) =0
&0 >0
Ve F=105
/=104
f=103

Figure 4: Two conditions when a minima can occur: a) When the minima
is on the constraint function boundary, in which case the gradients are
along the same direction ;b) When minima is inside the constraint space
(shown in yellow shade), in which case Vf(w*) = 0.




Duality and KKT conditions

@ This fact can be easily visualized from the previous figure. As
we can see, the first condition occurs when minima lies on the
boundary of function g. In this case, gradient vectors
corresponding to the function f and the function g, at w*,
point in the same direction barring multiplication by a real
constant.

@ Second condition depicts the case when minima lies inside the
constraint space. This space is shown shaded in Figure 1.
Clearly, for this case Vf(w) = 0 for minima to occur. This
primal problem can be converted to dual using the lagrange
multiplier. According to which, we can convert this problem
to the objective function augmented by weighted sum of
constraint functions in order to get the corresponding
lagrangian.

L(w,\) =f(w) +Ag(w); A e R



Duality and KKT conditions

@ Here, we wish to penalize higher magnitude coefficients,
hence, we wish g(w) to be negative while minimizing the
lagrangian. In order to maintain such direction, we must have
A > 0. Also, for solution w to be feasible, Vg(w) < 0.

@ Due to complementary slackness condition, we further have
Ag(w) = 0, which roughly suggests that the lagrange
multiplier is zero unless constraint is active at the minimum
point. As w minimizes the lagrangian L(w, \), gradient must
vanish at this point and hence we have f(w) + AVg(w) =0



Duality and KKT conditions

@ In general, optimization problem with inequality and equality
constraints might be depicted in the following manner:

miny, f(w)

subject to gi(w) <0;1 <i<m

hiw)=0;1<j<p



Duality and KKT conditions

@ Here, w € R" and the domain is the intersection of all
functions. Lagrangian is:

p
L(w, A, p) = f(w +Z)\lgl "‘Zﬂjhj(w
=1

@ Lagrange dual function is the minimum value of the
lagrangian over A € R™, € RP.

L (A 1) = argmax L(w, A, 1)



Duality and KKT conditions

@ The dual function yields lower bound for minimizer of the
primal formulation.

e Max of dual function L*(\, u) over (A, i) is also therefore a
lower bound

argmin L*(\, p)
At

@ The gap between primal and dual solutions is the duality gap,

@ Duality gap characterizes suboptimality of the solution.

f(w) = L*(A, 1)

@ When functions f and g;, Vi € [1, m] are convex and
h;,Vj € [1, p] are affine, Karush-Kuhn-Tucker (KKT)
conditions are both necessary and sufficient for points to be
both primal and dual optimal with zero duality gap.



Duality and KKT conditions

For above mentioned formulation of the problem KKT conditions
for all differentiable functions (i.e. f,g;, h;) with W primal optimal
and ()\,,u) dual optimal point are:

o V(W) -+ ™ AiVgi(i) + X5, 4 Vhi(W) = 0
° gi(w)<0;1<i<m

o)\;zo;lgigm

o Ligi(Ww)=0;1<i<m

@ hj(w)=0;1<,<p



Bound on A in the regularized least square solution

To minimize the error function subject to constraint |w| < ¢, we
apply KKT conditions at the point of optimality w*

Vw(f(w) + Ag(w)) =0

(the first KKT condition). Here, f(w) = (¢pw — Y)T(éw —Y) and,
g(w) = w|?® - ¢
Solving we get,
wt = (¢T¢ + Al)il(ﬁTy
From the second KKT condition we get,
lw*|[? < ¢
From the third KKT condition,
A>0
From the fourth condition

Allw*[|? = A¢
B



Bound on A in the regularized least square solution

Values of w and A that satisfy all these equations would yield an
optimal solution. Consider,

(@ o+ Aoy =w"
We multiply (¢" ¢ + M) on both sides and obtain,
(67 @)w* + (ADw* || = [|¢Ty]|
Using the triangle inequality we obtain,

1T o)W | + )W = [[(¢Td)w™ + (Aw*[| = [[6Tyl|



Bound on A in the regularized least square solution

(6T d)w*|| < a||w*|| for some « for finite |(¢7 ¢)w*||.
Substituting in the previous equation,

(o + 2w > [loTy]

-
NS
[[w]]

Note that when ||w*|| — 0, A — co. (Any intuition?) Using
lw*[|? < € we get,

-

N

V€
This is not the exact solution of A but the bound proves the
existence of A for some £ and ¢.




Alternative objective function

Substituting g(w) = ||w||2 — &, in the first KKT equation
considered earlier:

Ve (F(w) + A (w]? =€) =0
This is equivalent to solving
min(|| dw —y [[> +A || w [|?)

for the same choice of A. This form of regularized regression is
often referred to as Ridge regression.



Support Vector Regression and its Dual

Instructor: Prof. Ganesh Ramakrishnan



KKT and Dual for SVR

o miny e er 3 W+ C Y& + &)
s.t. Vi,
yi—wlo(x)—b<e+&,
b+w'o(x)—yi <e+&,
i, & =0
@ Let's consider the lagrange multipliers o, o7, p; and 7
corresponding to the above-mentioned constraints respectively.



KKT conditions

o Differentiating the Lagrangian w.r.t. w,
w — ajp(x;) + o d(x;) =0
e, w=>"(aj —af)p(xi)

o Differentiating the Lagrangian w.r.t. &;,
C—aj—puj=0
ie. aj+pi=C

e Differentiating the Lagrangian w.r.t &,
af +pui =C

o Differentiating the Lagrangian w.r.t b,
>ilaf —aj)=0

o Complimentary slackness:
ai(yi—w'é(x) —b—e—&)=0

pi&i =0
aj(b+wlo(x)—yi—e—¢&)=0
pi& =0



Conclusions from the KKT conditions:

aj € (O, C) =7

aj €(0,C) =7

1



KKT conditions

o Differentiating the Lagrangian w.r.t. w,
w — ajp(x;) + o d(x;) =0
e, w=>"(aj —af)p(xi)

o Differentiating the Lagrangian w.r.t. &;,
C—aj—puj=0
ie. aj+pi=C

e Differentiating the Lagrangian w.r.t &,
af +pui =C

o Differentiating the Lagrangian w.r.t b,
>ilaf —aj)=0

o Complimentary slackness:
ai(yi—w'é(x) —b—e—&)=0

pi&i =0
aj(b+wlo(x)—yi—e—¢&)=0
pi& =0



Conclusions from the KKT conditions:

ai(yi—w'o(x)—b—e—¢&)=0
and
af(b+w'(x)—yi—e—¢&) =0

=7



Conclusions from the KKT conditions:

a; € (0, C) =7

(C — Oé,')f,' =0=7

aj €(0,C) =7

(C—ai)g =0=7



For Support Vector Regression, since the original objective and the
constraints are convex, any (w, b, a, o, i, p*, €, €*) that satisfy
the necessary KKT conditions gives optimality (conditions are also
sufficient)



Some observations

o aj,a; >0, pjypu; >0, aj +pj=Cand of +pu; = C
Thus, aj, pi, af, pwi € [0, C], Vi

e lf0<a;<C, then0< < C
(as aj + pj = C)

o ui& =0and ai(y; — —w'd(x;) —b—e—¢&)=0are
complementary slackness conditions
So0<aj<C=¢=0andy,—wig(x)—b=c+§& =c¢

o All such points lie on the boundary of the € band

e Using any point x; (that is with ¢; € (0, C)) on margin, we
can recover b as:
b=y —w'g(x)—e



Support Vector Regression
Dual Objective



Dual function

o Let L*(cua*,u,,u,*) = minW,b,f,f* L(W) b7€7§*7a7a*5u7u*)
o By weak duality theorem, we have:
minw b.¢.¢ 3 [Wl* + C 370 (& +&7) > L, 0", i, ")
st yi—w'é(x;) — b <e—§, and
wlg(xj) +b—y; <e—&f, and
£, >0,Vi=1,...,n
@ The above is true for any o, > 0 and p;, u; >0
@ Thus,

min,_ 2lel +CZ§,+£,)2 max L(aa’, )
i=1 AT

s.t. yi — WT¢(X;) —b<e—¢&, and

wlé(xi)+b—y; <e—¢&F and

fiaf*ZO,Vi:L...,n



Dual objective

@ In case of Support Vector Regression, we have a strictly
convex objective and linear constraints = KKT conditions are
necessary and sufficient and strong duality holds:

n

Smin 5 > wl + C;(& &)= max (e a’ )
st yi—w'!é(x;) — b <e—§&, and
ngb(x,-) +b—-yi<e—¢& and
£, >0, Vi=1,...,n

@ This value is precisely obtained at the (w, b, &, &%, o, a*, u, u*)
that satisfies the necessary (and sufficient) optimality
conditions

@ Given strong duality, we can equivalently solve

max L*(a,a®, p, ")
a0,



’S o pt) =3 wl?+ CY (&G + &) +
Z:(Oé,(, wio(x))—b—e—&)+ai(wo(x)+b—yi—e— &)
)

1

(,u,g, +N, 5*)
1=
e We obtain w, b, §;, & in terms of o, o™,  and p* by using

the KKT conditions derived earlier as w = Zn:(a,- — o )p(x;)
i=1

and i(a;—a?)annd aj+pi=Candof+pui=C

° Thusl, \1/ve get:
L(W,b,f,f*,a,Q oy )
=32 2 (ai — af)(aj — & )¢T(X:)¢(XJ) +
S (G(C 2 0y — i) + €1(C = af — ) —
e ilai+ai)+ 3 yilei — 0‘;‘) =i 2 jlai—af)(aj —
af)o ! (xi)e(x)
= =52 il — af)(aj — a))oT (xi)b(x) — € 2o i(ai +
ai) + > yilei — of)



Kernel function: K(x;, x;) = ¢T(Xi)¢(><j)

o w=> " (ai —al)p(x;) = the final decision function
f(x)=wlo(x)+b=
Siii(ai—af)o T (xi)d(x) +y— i (ai—af)dT (x)d(x;) —e
xj is any point with «; € (0, C)

@ The dual optimization problem to compute the a's for SVR is:

1
maon,-,oaf - 5 Z Z(ai - O[;)(Oéj - aj)¢T(Xl)¢(XJ)
i

e (o +a) + Y yilai — )
s.t.
° Zi(ai —af)=0

° Oz,',Ck;!< S [0, C]

@ We notice that the only way these three expressions
involve ¢ is through ¢ ' (x;)é(x;) = K(x;,x;), for some i, j



