
CS725: Practice Problems 2

1. Understand the L1 regularized logistic regression problem in http://www.

eecs.umich.edu/~honglak/aaai06_L1logreg.pdf and understand the
algorithm used to solve it. What are the gradient ascent steps for the regu-
larized and for the non-regularized logistic regression objective? What are
the Newton update rules for the regularized and for the non-regularized
logistic regression objective?

2. Apply EM to mixtures of bernoullis (Sections 8 and 8.1), multivariate
bernoullis with Nave Bayes assumption (Section 10.4) and univariate Gaus-
sians with Nave Bayes assumption (Section 10.5) and mixture of multi-
variate Gaussians with common means (Section 11.1, page 64). All ref-
erences to sections are to http://www.cse.iitb.ac.in/~cs725/notes/

classNotes/lecturenotes_cs725_aut11.pdf.

3. Let X be a random vector and Γ its covariance matrix. Let e1, . . . , en be
the n (normalized) eigenvectors of Γ. The n principal components of X
are said to be eT1 X, eT2 X, . . ., eTnX.

The idea behind principal components is to find a rotation of the original
coordinate system and to express X in that system so that each new
coordinate expresses as much as possible of the variability in X as can be
expressed by a linear combination of the n entries of X.

(a) Let p(X1) = N (0, 1) and p(X2) = N (0, 1) and cov(X1, X2) = θ. Find
all the principal components of the random vector X = [X1, X2]T .

(b) Now, let Y = N (0,Σ) where Σ = λ2Ip×p + α2ones(p, p) for any
λ, α ∈ <. Here, Ip×p is a p × p identity matrix while ones(p, p)
(following the scilab notation) is a p × p matrix of 1’s. Find all the
principal components of Y.

4. Assume that a random vector X ∈ <n comes from the commonly used
exponential probability distribution of the form

Pr (X |w) =
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where the forms of basis functions φk(.) are known and φk(xi) can be
computed for any given data point xi. The parameters w = {wk} are not
known. Z(w) is the normalization factor.

(a) Let us say you learn the maximum likelihood ŵML estimate using
data set D = {x1,x2, . . . ,xm}. We can then derive the following
equality;

∫
x∈<n

Pr (x |ŵML)φk(x)dx = A
∑
i

B(i) (2)

for any 1 ≤ k ≤ r. Determine the values of A and B(i) in terms of
any of the known quantities in this problem. In the summation, over
what range does i vary? You MUST show all the derivation steps.

(b) Now suppose you want to maximize the entropy of Pr (X |w) subject
to the constraint (2). Derive the form of Pr (X |w) having maximum
entropy, while satisfying constraint (2).

5. Prove that the k-means algorithm will converge in a finite number of steps.
(As usual, the number of data points being clustered is n and k is fixed).

6. Solve the following problems from PRML (solutions on PRML book web-
site): 1.1, 1.9, 1.10, 1.12, 1.22, 1.24, 1.29, 2.1, 2.32, 2.34, 2.36, 2.40, 2.56,
2.60, 3.4, 3.6, 4.2, 4.4, 4.9, 4.13, 6.1, 6.12, 7.1, 7.4, 7.8, 8.1, 8.8, 8.9, 8.12,
8.15, 8.18, 9.1, 9.3, 9.7, 9.8, 9.12, 9.15, 9.25, 9.26,

7. Solving the following harder problems from PRML (solutions on PRML
book website) is recommended only for pratice: 1.15,, 1.20, 1.27, 1.35,
1.41, 2.17, 2.20, 3.5, 3.8, 3.10, 3.15, 4.19, 6.5, 6.7, 6.14, 8.2, 9.17, 14.5.


