
Combining Inductive and AnalyticalLearning [Read Ch. 12][Suggested exercises: 12.1, 12.2, 12.6, 12.7, 12.8]�Why combine inductive and analytical learning?� KBANN: Prior knowledge to initialize thehypothesis� TangetProp, EBNN: Prior knowledge alterssearch objective� FOCL: Prior knowledge alters search operators
1 lecture slides for textbook Machine Learning, c
T. Mitchell, McGraw Hill, 1997



Inductive and Analytical LearningInductive learning Analytical learningHypothesis �ts data Hypothesis �ts domain theoryStatistical inference Deductive inferenceRequires little prior knowledge Learns from scarce dataSyntactic inductive bias Bias is domain theory
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What We Would Like
Analytical learningInductive learning

      Plentiful data
No prior knowledge

Perfect prior knowledge
         Scarce dataGeneral purpose learning method:� No domain theory ! learn as well as inductivemethods� Perfect domain theory ! learn as well asProlog-EBG� Accomodate arbitrary and unknown errors indomain theory� Accomodate arbitrary and unknown errors intraining data
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Domain theory:Cup  Stable, Liftable, OpenVesselStable  BottomIsFlatLiftable  Graspable, LightGraspable  HasHandleOpenVessel  HasConcavity, ConcavityPointsUpTraining examples: Cups Non-CupsBottomIsFlat p p p p p p p pConcavityPoints Up p p p p p p pExpensive p p p pFragile p p p p p pHandleOnTop p pHandleOnSide p p pHasConcavity p p p p p p p p pHasHandle p p p p pLight p p p p p p p pMadeOfCeramic p p p pMadeOfPaper p pMadeOfStyrofoam p p p p4 lecture slides for textbook Machine Learning, c
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KBANNKBANN (data D, domain theory B)1. Create a feedforward network h equivalent to B2. Use Backprop to tune h to �t D
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Neural Net Equivalent to Domain Theory
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Creating Network Equivalent to Do-main TheoryCreate one unit per horn clause rule (i.e., an ANDunit)� Connect unit inputs to corresponding clauseantecedents� For each non-negated antecedent, correspondinginput weight w  W , where W is some constant� For each negated antecedent, input weightw  �W� Threshold weight w0 �(n� :5)W , where n isnumber of non-negated antecedentsFinally, add many additional connections withnear-zero weightsLiftable Graspable;:Heavy7 lecture slides for textbook Machine Learning, c
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Result of re�ning the network
HasHandle

HandleOnTop

HandleOnSide

BottomIsFlat

HasConcavity

ConcavityPointsUp

Light

MadeOfCeramic

MadeOfPaper

MadeOfStyrofoam

Expensive

Fragile

Stable

Liftable

Open-Vessel

Large positive weight

Large negative weight

Negligible weight

CupGraspable

8 lecture slides for textbook Machine Learning, c
T. Mitchell, McGraw Hill, 1997



KBANN ResultsClassifying promoter regions in DNAleave one out testing:� Backpropagation: error rate 8/106� KBANN: 4/106Similar improvements on other classi�cation,control tasks.
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Hypothesis space search in KBANN
Hypothesis Space

Hypotheses that
fit training data
equally well

Initial hypothesis
for KBANN

Initial hypothesis
for BACKPROPAGATION
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EBNNKey idea:� Previously learned approximate domain theory� Domain theory represented by collection ofneural networks� Learn target function as another neural network
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Modi�ed Objective for Gradient Descent
E = Xi 266664(f(xi)� f̂ (xi))2 + �i Xj 0BBB@@A(x)@xj � @f̂(x)@xj 1CCCA2(x=xi)377775where �i � 1� jA(xi)� f(xi)jc� f(x) is target function� f̂(x) is neural net approximation to f(x)� A(x) is domain theory approximation to f(x)
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Hypothesis Space Search in EBNN
Hypotheses that 
maximize fit to data

Hypothesis Space

BACKPROPAGATION

Search

TANGENTPROP

Search

Hypotheses that
maximize fit to
data and prior
knowledge
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Search in FOCL
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FOCL ResultsRecognizing legal chess endgame positions:� 30 positive, 30 negative examples� FOIL: 86%� FOCL: 94% (using domain theory with 76%accuracy)NYNEX telephone network diagnosis� 500 training examples� FOIL: 90%� FOCL: 98% (using domain theory with 95%accuracy)
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