13. Reinforcement Learning

[Read Chapter 13|
|[Exercises 13.1, 13.2, 13.4]

e Control learning
e Control policies that choose optimal actions
e () learning

e Convergence
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Control Learning

Consider learning to choose actions, e.g.,

e Robot learning to dock on battery charger

e Learning to choose actions to optimize factory
output

e Learning to play Backgammon

Note several problem characteristics:
e Delayed reward
e Opportunity for active exploration
e Possibility that state only partially observable

e Possible need to learn multiple tasks with same
sensors /effectors
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One Example: TD-Gammon

[ Tesauro, 1995]
Learn to play Backgammon

Immediate reward
e 100 if win
e -100 if lose

e O for all other states

Trained by playing 1.5 million games against itself

Now approximately equal to best human player
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Reinforcement Learning Problem

Agent

State Reward Action

Environment

Goadl: Learn to choose actions that maximize

r0+ yr1+y2r2+ .. , Where 0<y<1
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Markov Decision Processes

Assume
e finite set of states S
e set of actions A

e at each discrete time agent observes state s; € S
and chooses action a; € A

e then receives immediate reward r;
e and state changes to s;;1

e Markov assumption: s;y1 = (8¢, a;) and
r = r(st, ar)
—1i.e., r and s;;1 depend only on current state
and action
— functions ¢ and r may be nondeterministic

— functions ¢ and r not necessarily known to
agent
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Agent’s Learning Task

Execute actions in environment, observe results,
and

e learn action policy 7 : S — A that maximizes
Elri + 11 + Vg + . ]
from any starting state in S

e here 0 < v < 1 is the discount factor for future
rewards

Note something new:
e Target functionis7:5 — A
e but we have no training examples of form (s, a)

e training examples are of form ((s,a), r)
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Value Function

To begin, consider deterministic worlds...

For each possible policy 7 the agent might adopt,
we can define an evaluation function over states

VT(8) =1+ g1 + VT2 + -
= X YTy

1=

where 74, 1:41,... are generated by following policy
m starting at state s

Restated, the task is to learn the optimal policy 7*

7" = argmax V" (s), (Vs)
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What to Learn

We might try to have agent learn the evaluation
function V™ (which we write as V*)

It could then do a lookahead search to choose best
action from any state s because

7(s) = argmax|r(s,a) + yV*(d(s, a))]
A problem:

e This works well if agent knows 0 : S x A — S,
andr: S xA—R

e But when it doesn’t, it can’t choose actions this
way

263 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997



) Function

Define new function very similar to V*

Q(s,a) = r(s,a) +yV7(0(s, a))

If agent learns (), it can choose optimal action even
without knowing 9!

' (s) = arggnax[r(s, a) +yV*(d(s,a))]

(s) = argmax Q(s,a)

() is the evaluation function the agent will learn
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Training Rule to Learn @

Note () and V* closely related:
Vi(s) = max Q(s, a')

Which allows us to write () recursively as

Q(st,a:;) = 1(8t,a¢) + YV (0(5¢,a)))
T(‘St? at) + maax Q(St—l-l? CLI>

Nice! Let @ denote learner’s current approximation
to (). Consider training rule

)(s.a) «— r+~vmaxQ(s, d
Q(s.0) 1+ ymax Q(s',)

where s’ is the state resulting from applying action
a in state s
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@ Learning for Deterministic Worlds

For each s, a initialize table entry Q(s,a) < 0
Observe current state s

Do forever:
e Select an action a and execute it
e Receive immediate reward r
e Observe the new state s

e Update the table entry for Q(s,a) as follows:
Q(s,a) < r+ vquQ(s', a')

s+ s
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Updating §

72 100 90 100
— —
+81 - +81
aright
initia state: Sl next state: S2

A

Q(51, Qright) T—I—WIHﬁXQ(SQ,CL/)
~ 0+0.9 max{63,81,100}
+— 90

notice if rewards non-negative, then

<\V/S,CL,TL> CA2n—|—1<37a> > @n<37a>

and
(Vs,a,n) 0<Qu(s,a) < Q(s,a)
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@ converges to (). Consider case of deterministic
world where see each (s, a) visited infinitely often.

Proof: Define a tull interval to be an interval during
which each (s, a) is visited. During each full
interval the largest error in Q table is reduced by
factor of ~

Let Qn be table after n updates, and A, be the
maximum error in ¢),; that is

A, = nax |Qn<3> a) —Q(s,a)l

For any table entry Q,(s,a) updated on iteration
n + 1, the error in the revised estimate Q,11(s,a) is

Quin(s,a) = Q(s,a)] = |(r+ 7 max Qu(s', )
~(r +ymgxQ(sa)

ol max Qn(s', a) — max Q(s',a)

< g [Qu (s, @) — Q')
< ymax |Q,(s",a') — Q(s",d)|
|@n+1<S,CL> — Q(S,CL>| < WAn
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Note we used general fact that

|max f1(a) — max fo(a)| < max|fi(a) — fo(a)
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Nondeterministic Case

What if reward and next state are
non-deterministic?

We redefine V., () by taking expected values

V7(s) = Elri +yri1 + 727“t+2 + .. .]

E[% V' reg]

Q(s,a) = E[r(s,a) +~vV*(d(s,a))]
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Nondeterministic Case

() learning generalizes to nondeterministic worlds
Alter training rule to
Qn(s,a) +— (1—a,)Qn1(s, @)+, [r+max Qn1(s",d)]

where

1
Qp = T
1 + visits,(s,a)

Can still prove convergence of @ to @ [Watkins and
Dayan, 1992]
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Temporal Difference Learning

() learning: reduce discrepancy between successive
() estimates

One step time difference:

QW (s, ar) = ri + Y max Q(s141,a)
Why not two steps?
Q(2)<St, ay) =1+ yrie + ~? max Q(SH_Q, a)
Or n?

Q" (s, ar) = retyreate -+ i+ max Q(St4n, @)

Blend all of these:
Q)\<3t7 at) = <1_)‘> [Q(1)<St7 at) + )‘Q(Q)(Sta at) + )‘QQ(S)<3L‘7 at) |
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Temporal Difference Learning

Q* (81, a:) = (1=N) [Q(l)(st, ar) + AQP (51, ar) + NQY (54, a4)
Equivalent expression:
Q(spyar) =1+ (1 =) max Q(s1, ar)
+X QM (8141, ar11)]
TD(\) algorithm uses above training rule
e Sometimes converges faster than () learning

e converges for learning V* for any 0 < A <1
(Dayan, 1992)

e Tesauro’s TD-Gammon uses this algorithm
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Subtleties and Ongoing Research

e Replace @ table with neural net or other
generalizer

e Handle case where state only partially observable
e Design optimal exploration strategies

e Eixtend to continuous action, state

e Learn and use  : S x A — S

e Relationship to dynamic programming
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