13. Reinforcement Learning

[Read Chapter 13|
|[Exercises 13.1, 13.2, 13.4]

e Control learning
e Control policies that choose optimal actions
e () learning

e Convergence

255 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Control Learning

Consider learning to choose actions, e.g.,

e Robot learning to dock on battery charger

e Learning to choose actions to optimize factory
output

e Learning to play Backgammon

Note several problem characteristics:
e Delayed reward
e Opportunity for active exploration
e Possibility that state only partially observable

e Possible need to learn multiple tasks with same
sensors /effectors

256 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

One Example: TD-Gammon

[Tesauro, 1995]
Learn to play Backgammon

Immediate reward
e 100 if win
e -100 if lose

e O for all other states

Trained by playing 1.5 million games against itself

Now approximately equal to best human player

257 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Reinforcement Learning Problem

Agent

State Reward Action

Environment

Goadl: Learn to choose actions that maximize

r0+ yr1+y2r2+ .. , Where 0<y<1

258 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Markov Decision Processes

Assume
e finite set of states S
e set of actions A

e at each discrete time agent observes state s; € S
and chooses action a; € A

e then receives immediate reward r;
e and state changes to s;;1

e Markov assumption: s;y1 = (8¢, a;) and
r = r(st, ar)
—1i.e., r and s;;1 depend only on current state
and action
— functions ¢ and r may be nondeterministic

— functions ¢ and r not necessarily known to
agent

259 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Agent’s Learning Task

Execute actions in environment, observe results,
and

e learn action policy 7 : S — A that maximizes
Elri + 11 + Vg + .]
from any starting state in S

e here 0 < v < 1 is the discount factor for future
rewards

Note something new:
e Target functionis7:5 — A
e but we have no training examples of form (s, a)

e training examples are of form ((s,a), r)

260 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Value Function

To begin, consider deterministic worlds...

For each possible policy 7 the agent might adopt,
we can define an evaluation function over states

VT(8) =1+ g1 + VT2 + -
= X YTy

1=

where 74, 1:41,... are generated by following policy
m starting at state s

Restated, the task is to learn the optimal policy 7*

7" = argmax V" (s), (Vs)

261 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

262

0
90 100
NN LIRS — —t
< Ci 90 [~ 100 [, G
A |72 Alsi | A A | A | A
G | 9 ¥ | 100] [y Y |
= = s1 [~ 90 [100
1
Q(s,a) values V*(s) values
—t — G
A
|
— —1

One optimal policy

lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

What to Learn

We might try to have agent learn the evaluation
function V™ (which we write as V*)

It could then do a lookahead search to choose best
action from any state s because

7(s) = argmax|r(s,a) + yV*(d(s, a))]
A problem:

e This works well if agent knows 0 : S x A — S,
andr: S xA—R

e But when it doesn’t, it can’t choose actions this
way

263 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

) Function

Define new function very similar to V*

Q(s,a) = r(s,a) +yV7(0(s, a))

If agent learns (), it can choose optimal action even
without knowing 9!

' (s) = arggnax[r(s, a) +yV*(d(s,a))]

(s) = argmax Q(s,a)

() is the evaluation function the agent will learn

264 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Training Rule to Learn @

Note () and V* closely related:
Vi(s) = max Q(s, a')

Which allows us to write () recursively as

Q(st,a:;) = 1(8t,a¢) + YV (0(5¢,a)))
T(‘St? at) + maax Q(St—l-l? CLI>

Nice! Let @ denote learner’s current approximation
to (). Consider training rule

)(s.a) «— r+~vmaxQ(s, d
Q(s.0) 1+ ymax Q(s',)

where s’ is the state resulting from applying action
a in state s

265 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

@ Learning for Deterministic Worlds

For each s, a initialize table entry Q(s,a) < 0
Observe current state s

Do forever:
e Select an action a and execute it
e Receive immediate reward r
e Observe the new state s

e Update the table entry for Q(s,a) as follows:
Q(s,a) < r+ vquQ(s', a')

s+ s

266 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Updating §

72 100 90 100
— —
+81 - +81
aright
initia state: Sl next state: S2

A

Q(51, Qright) T—I—WIHﬁXQ(SQ,CL/)
~ 0+0.9 max{63,81,100}
+— 90

notice if rewards non-negative, then

<\V/S,CL,TL> CA2n—|—1<37a> > @n<37a>

and
(Vs,a,n) 0<Qu(s,a) < Q(s,a)

267 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

@ converges to (). Consider case of deterministic
world where see each (s, a) visited infinitely often.

Proof: Define a tull interval to be an interval during
which each (s, a) is visited. During each full
interval the largest error in Q table is reduced by
factor of ~

Let Qn be table after n updates, and A, be the
maximum error in ¢),; that is

A, = nax |Qn<3> a) —Q(s,a)l

For any table entry Q,(s,a) updated on iteration
n + 1, the error in the revised estimate Q,11(s,a) is

Quin(s,a) = Q(s,a)] = |(r+ 7 max Qu(s',)
~(r +ymgxQ(sa)

ol max Qn(s', a) — max Q(s',a)

< g [Qu (s, @) — Q')
< ymax |Q,(s",a') — Q(s",d)|
|@n+1<S,CL> — Q(S,CL>| < WAn

268 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Note we used general fact that

|max f1(a) — max fo(a)| < max|fi(a) — fo(a)

269 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Nondeterministic Case

What if reward and next state are
non-deterministic?

We redefine V., () by taking expected values

V7(s) = Elri +yri1 + 727“t+2 + .. .]

E[% V' reg]

Q(s,a) = E[r(s,a) +~vV*(d(s,a))]

270 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Nondeterministic Case

() learning generalizes to nondeterministic worlds
Alter training rule to
Qn(s,a) +— (1—a,)Qn1(s, @)+, [r+max Qn1(s",d)]

where

1
Qp = T
1 + visits,(s,a)

Can still prove convergence of @ to @ [Watkins and
Dayan, 1992]

271 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Temporal Difference Learning

() learning: reduce discrepancy between successive
() estimates

One step time difference:

QW (s, ar) = ri + Y max Q(s141,a)
Why not two steps?
Q(2)<St, ay) =1+ yrie + ~? max Q(SH_Q, a)
Or n?

Q" (s, ar) = retyreate -+ i+ max Q(St4n, @)

Blend all of these:
Q)\<3t7 at) = <1_)‘> [Q(1)<St7 at) +)‘Q(Q)(Sta at) +)‘QQ(S)<3L‘7 at) |

272 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Temporal Difference Learning

Q* (81, a:) = (1=N) [Q(l)(st, ar) + AQP (51, ar) + NQY (54, a4)
Equivalent expression:
Q(spyar) =1+ (1 =) max Q(s1, ar)
+X QM (8141, ar11)]
TD(\) algorithm uses above training rule
e Sometimes converges faster than () learning

e converges for learning V* for any 0 < A <1
(Dayan, 1992)

e Tesauro’s TD-Gammon uses this algorithm

273 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Subtleties and Ongoing Research

e Replace @ table with neural net or other
generalizer

e Handle case where state only partially observable
e Design optimal exploration strategies

e Eixtend to continuous action, state

e Learn and use : S x A — S

e Relationship to dynamic programming

274 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

