
13. Reinforcement Learning[Read Chapter 13][Exercises 13.1, 13.2, 13.4]� Control learning� Control policies that choose optimal actions� Q learning� Convergence
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Control LearningConsider learning to choose actions, e.g.,� Robot learning to dock on battery charger� Learning to choose actions to optimize factoryoutput� Learning to play BackgammonNote several problem characteristics:� Delayed reward� Opportunity for active exploration� Possibility that state only partially observable� Possible need to learn multiple tasks with samesensors/e�ectors
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One Example: TD-Gammon[Tesauro, 1995]Learn to play BackgammonImmediate reward� +100 if win� -100 if lose� 0 for all other statesTrained by playing 1.5 million games against itselfNow approximately equal to best human player
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Reinforcement Learning Problem
Agent

Environment

State Reward Action

r  + γγ r  +   r  + ...  , where γ <1
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Goal: Learn to choose actions that maximize
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0r 1r 2r
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Markov Decision ProcessesAssume� �nite set of states S� set of actions A� at each discrete time agent observes state st 2 Sand chooses action at 2 A� then receives immediate reward rt� and state changes to st+1�Markov assumption: st+1 = �(st; at) andrt = r(st; at){ i.e., rt and st+1 depend only on current stateand action{ functions � and r may be nondeterministic{ functions � and r not necessarily known toagent
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Agent's Learning TaskExecute actions in environment, observe results,and� learn action policy � : S ! A that maximizesE[rt + 
rt+1 + 
2rt+2 + : : :]from any starting state in S� here 0 � 
 < 1 is the discount factor for futurerewardsNote something new:� Target function is � : S ! A� but we have no training examples of form hs; ai� training examples are of form hhs; ai; ri
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Value FunctionTo begin, consider deterministic worlds...For each possible policy � the agent might adopt,we can de�ne an evaluation function over statesV �(s) � rt + 
rt+1 + 
2rt+2 + :::� 1Xi=0 
irt+iwhere rt; rt+1; : : : are generated by following policy� starting at state sRestated, the task is to learn the optimal policy ���� � argmax� V �(s); (8s)
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What to LearnWe might try to have agent learn the evaluationfunction V �� (which we write as V �)It could then do a lookahead search to choose bestaction from any state s because��(s) = argmaxa [r(s; a) + 
V �(�(s; a))]A problem:� This works well if agent knows � : S �A! S,and r : S �A! <� But when it doesn't, it can't choose actions thisway
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Q FunctionDe�ne new function very similar to V �Q(s; a) � r(s; a) + 
V �(�(s; a))If agent learns Q, it can choose optimal action evenwithout knowing �!��(s) = argmaxa [r(s; a) + 
V �(�(s; a))]��(s) = argmaxa Q(s; a)Q is the evaluation function the agent will learn
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Training Rule to Learn QNote Q and V � closely related:V �(s) = maxa0 Q(s; a0)Which allows us to write Q recursively asQ(st; at) = r(st; at) + 
V �(�(st; at)))= r(st; at) + 
maxa0 Q(st+1; a0)Nice! Let Q̂ denote learner's current approximationto Q. Consider training ruleQ̂(s; a) r + 
maxa0 Q̂(s0; a0)where s0 is the state resulting from applying actiona in state s
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Q Learning for Deterministic WorldsFor each s; a initialize table entry Q̂(s; a) 0Observe current state sDo forever:� Select an action a and execute it� Receive immediate reward r� Observe the new state s0� Update the table entry for Q̂(s; a) as follows:Q̂(s; a) r + 
maxa0 Q̂(s0; a0)� s s0
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Updating Q̂
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Q̂(s1; aright)  r + 
maxa0 Q̂(s2; a0) 0 + 0:9 maxf63; 81; 100g 90notice if rewards non-negative, then(8s; a; n) Q̂n+1(s; a) � Q̂n(s; a)and (8s; a; n) 0 � Q̂n(s; a) � Q(s; a)
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Q̂ converges to Q. Consider case of deterministicworld where see each hs; ai visited in�nitely often.Proof: De�ne a full interval to be an interval duringwhich each hs; ai is visited. During each fullinterval the largest error in Q̂ table is reduced byfactor of 
Let Q̂n be table after n updates, and �n be themaximum error in Q̂n; that is�n = maxs;a jQ̂n(s; a)�Q(s; a)jFor any table entry Q̂n(s; a) updated on iterationn+ 1, the error in the revised estimate Q̂n+1(s; a) isjQ̂n+1(s; a) �Q(s; a)j = j(r + 
maxa0 Q̂n(s0; a0))�(r + 
maxa0 Q(s0; a0))j= 
jmaxa0 Q̂n(s0; a0)�maxa0 Q(s0; a0)j� 
maxa0 jQ̂n(s0; a0)�Q(s0; a0)j� 
maxs00;a0 jQ̂n(s00; a0)�Q(s00; a0)jjQ̂n+1(s; a) �Q(s; a)j � 
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Note we used general fact thatjmaxa f1(a)�maxa f2(a)j � maxa jf1(a) � f2(a)j
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Nondeterministic CaseWhat if reward and next state arenon-deterministic?We rede�ne V;Q by taking expected valuesV �(s) � E[rt + 
rt+1 + 
2rt+2 + : : :]� E[ 1Xi=0 
irt+i]Q(s; a) � E[r(s; a) + 
V �(�(s; a))]
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Nondeterministic CaseQ learning generalizes to nondeterministic worldsAlter training rule toQ̂n(s; a) (1��n)Q̂n�1(s; a)+�n[r+maxa0 Q̂n�1(s0; a0)]where �n = 11 + visitsn(s; a)Can still prove convergence of Q̂ to Q [Watkins andDayan, 1992]
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Temporal Di�erence LearningQ learning: reduce discrepancy between successiveQ estimatesOne step time di�erence:Q(1)(st; at) � rt + 
maxa Q̂(st+1; a)Why not two steps?Q(2)(st; at) � rt + 
rt+1 + 
2maxa Q̂(st+2; a)Or n?Q(n)(st; at) � rt+
rt+1+� � �+
(n�1)rt+n�1+
nmaxa Q̂(st+n; a)Blend all of these:Q�(st; at) � (1��) "Q(1)(st; at) + �Q(2)(st; at) + �2Q(3)(st; at) + � � �#
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Temporal Di�erence LearningQ�(st; at) � (1��) "Q(1)(st; at) + �Q(2)(st; at) + �2Q(3)(st; at) + � � �#Equivalent expression:Q�(st; at) = rt + 
[ (1� �)maxa Q̂(st; at)+� Q�(st+1; at+1)]TD(�) algorithm uses above training rule� Sometimes converges faster than Q learning� converges for learning V � for any 0 � � � 1(Dayan, 1992)� Tesauro's TD-Gammon uses this algorithm
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Subtleties and Ongoing Research� Replace Q̂ table with neural net or othergeneralizer� Handle case where state only partially observable� Design optimal exploration strategies� Extend to continuous action, state� Learn and use �̂ : S � A! S� Relationship to dynamic programming
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