Evaluating Hypotheses

[Read Ch. 5]
[Recommended exercises: 5.2, 5.3, 5.4]

e Sample error, true error

e Confidence intervals for observed hypothesis
error

e Estimators

e Binomial distribution, Normal distribution,
Central Limit Theorem

e Paired t tests

e Comparing learning methods

74 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997



Two Definitions of Error

The true error of hypothesis h with respect to
target function f and distribution D is the
probability that A will misclassify an instance
drawn at random according to D.

errorp(h) = xfé%[f(a:) # h(x)]

The sample error of h with respect to target
function f and data sample S is the proportion of
examples h misclassifies

errors(h) = — ¥ d(f(z) # h(x))
Where 6(f(x) # h(x)) is 1 if f(x) # h(z), and 0

otherwise.

How well does errorg(h) estimate errorp(h)?
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Problems Estimating Error

1. Bias: If S is training set, errorg(h) is
optimistically biased

bias = Elerrors(h)] — errorp(h)

For unbiased estimate, h and S must be chosen
independently

2. Variance: Even with unbiased S, errorg(h) may
still vary from errorp(h)
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Example

Hypothesis h misclassifies 12 of the 40 examples in
S

12
errorg(h) = 0 .30

What is errorp(h)?
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Estimators

Experiment:

1. choose sample S of size n according to
distribution D

2. measure errorg(h)

errorg(h) is a random variable (i.e., result of an
experiment)

errorg(h) is an unbiased estimator for errorp(h)

Given observed errorg(h) what can we conclude
about errorp(h)?
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Confidence Intervals

It

e S contains n examples, drawn independently of
h and each other

en > 30
Then

e With approximately 95% probability, errorp(h)
lies in interval

errors(h)(1 — errorg(h))

errorg(h) + 1.96J
n
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Confidence Intervals

It

e S contains n examples, drawn independently of
h and each other

en > 30
Then

e With approximately N% probability, errorp(h)
lies in interval

errors(h)(1 — errorg(h))

errorg(h) + ZNJ
n

where

N%:|50% 68% 80% 90% 95% 98% 99%
zy: 10.67 1.00 1.28 1.64 1.96 2.33 2.58
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errorg(h) is a Random Variable

Rerun the experiment with diffterent randomly
drawn S (of size n)

Probability of observing r misclassified examples:

0.14 Binomial distribution for n =40, p =0.3
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P(r) = A — Y errorp(h) (1 — errorp(h))" ™"
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Binomial Probability Distribution

0.14 Binomial distribution for n =40, p =0.3
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Probability P(r) of r heads in n coin flips, if
p = Pr(heads)
e Fxpected, or mean value of X, F[X], is

E[X] = éOiP(i) = np
e Variance of X is
Var(X) = E[(X — E[X])?] = np(1 - p)
e Standard deviation of X, oy, is
ox = VE[(X - E[X])?] = /np(1 - p)
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Normal Distribution Approximates Bino-
mial

errorg(h) follows a Binomial distribution, with

® mean fle,y o (h) = errorp(h)

e standard deviation O errorg(h)

errorp(h)(1 — errorp(h))

o h:J
errorg(h) n

Approximate this by a Normal distribution with
® mean fle,y o (h) = errorp(h)
o standard deviation o, o ¢(n)

Jerrors(h)(l — errorg(h))

n

~/

Okwrorg(h) ~
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Normal Probability Distribution

Normal distribution with mean 0, standard deviation 1
04 T T T T
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Pe) = ot
The probability that X will fall into the interval
(a, b) is given by

—3 (1)

g

DO —

J; pla)da
e Expected, or mean value of X, E[X], is

ElX]=p
e Variance of X is
Var(X) = o?
e Standard deviation of X, oy, is

ox = 0
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Normal Probability Distribution
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N% of area (probability) lies in u &+ zyo

N%:|150% 68% 80% 90% 95% 98% 99%
zy: 10.67 1.00 1.28 1.64 1.96 2.33 2.58
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Confidence Intervals, More Correctly

It

e S contains n examples, drawn independently of
h and each other

en > 30
Then

e With approximately 95% probability, errorg(h)
lies in interval

errorp(h)(1 — errorp(h))

errorp(h) + 1.96J
n

equivalently, errorp(h) lies in interval

errorp(h)(1 — errorp(h))

errorg(h) + 1.96J
n

which is approximately

errors(h)(1 — errorg(h))

errorg(h) + 1.96J
n
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Central Limit Theorem

Consider a set of independent, identically
distributed random variables Y;...Y,,, all governed
by an arbitrary probability distribution with mean
1 and finite variance 0. Define the sample mean,

_ 1 »
Y=-3YY%,
n i=1

Central Limit Theorem. As n — oo, the
distribution governing Y approaches a Normal

. : : 2
distribution, with mean p and variance °-.
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Calculating Confidence Intervals

1. Pick parameter p to estimate
e errorp(h)

2. Choose an estimator
e errorg(h)

3. Determine probability distribution that governs
estimator

e errorg(h) governed by Binomial distribution,
approximated by Normal when n > 30

4. Find interval (L, U) such that N% of probability
mass falls in the interval

e Use table of zx values
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Difference Between Hypotheses

Test hqy on sample S, test hy on S

1. Pick parameter to estimate

d = errorp(hy) — errorp(hs)

2. Choose an estimator

A

d = errorg,(h1) — errorg,(hs)

3. Determine probability distribution that governs
estimator

o ¢errorsl(h1)(1 — errorg, (hy)) L+ errors, (hg)(1 — errorg, (hz))
4~

nq n2

4. Find interval (L, U) such that N% of probability
mass falls in the interval

errorg,(hi)(1 — errorg,(hy)) N errors,(h2)(1 — error;
mnq na

Ci:l:ZN
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Paired t test to compare h 4,h g

1. Partition data into k£ disjoint test sets
11,15, ..., 1} of equal size, where this size is at
least 30.

2. For ¢ from 1 to k, do

0; — errorr,(ha) — errory(hp)

3. Return the value 8, where

0 o

| =

1

Nk

NY% confidence interval estimate for d:

5 + tN,k—l Ss
1 k -
= 82
0= k(k—1) z§1<5l 2

Note 9; approximately Normally distributed
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Comparing learning algorithms L 4 and Lp

What we’d like to estimate:

Escplerrorp(La(S)) — errorp(Lp(S))]
where L(S) is the hypothesis output by learner L
using training set S

i.e., the expected difference in true error between
hypotheses output by learners L4 and Lp, when
trained using randomly selected training sets S
drawn according to distribution D.

But, given limited data Dy, what is a good
estimator?

e could partition Dy into training set S and
training set 7Ty, and measure

errorr,(L4(Sy)) — errory,(Lp(So))

e even better, repeat this many times and average
the results (next slide)
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Comparing learning algorithms L 4 and Lp

1. Partition data D, into k disjoint test sets
11,15, ..., 1} of equal size, where this size is at
least 30.

2. For ¢ from 1 to k, do

use 1T; for the test set, and the remaining data
for training set \S;

o Si+{Dy—Ti}

o hy— L(S;)

e hp + Lg(S;)

e §; +— errory(h4) — errory.(hp)

3. Return the value 8, where

5

T =
it
9”

1
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Comparing learning algorithms L 4 and Lp

Notice we’d like to use the paired t test on & to
obtain a confidence interval

but not really correct, because the training sets in
this algorithm are not independent (they overlap!)

more correct to view algorithm as producing an
estimate of

Escp,lerrorp(La(S)) — errorp(Lp(S))]
instead of

Escplerrorp(L4(S)) — errorp(Lp(S))]

but even this approximation is better than no
comparison
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