
Bayesian Learning[Read Ch. 6][Suggested exercises: 6.1, 6.2, 6.6]� Bayes Theorem�MAP, ML hypotheses�MAP learners�Minimum description length principle� Bayes optimal classi�er� Naive Bayes learner� Example: Learning over text data� Bayesian belief networks� Expectation Maximization algorithm
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Two Roles for Bayesian MethodsProvides practical learning algorithms:� Naive Bayes learning� Bayesian belief network learning� Combine prior knowledge (prior probabilities)with observed data� Requires prior probabilitiesProvides useful conceptual framework� Provides \gold standard" for evaluating otherlearning algorithms� Additional insight into Occam's razor
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Bayes TheoremP (hjD) = P (Djh)P (h)P (D)� P (h) = prior probability of hypothesis h� P (D) = prior probability of training data D� P (hjD) = probability of h given D� P (Djh) = probability of D given h
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Choosing HypothesesP (hjD) = P (Djh)P (h)P (D)Generally want the most probable hypothesis giventhe training dataMaximum a posteriori hypothesis hMAP :hMAP = argmaxh2H P (hjD)= argmaxh2H P (Djh)P (h)P (D)= argmaxh2H P (Djh)P (h)If assume P (hi) = P (hj) then can further simplify,and choose the Maximum likelihood (ML)hypothesis hML = argmaxhi2H P (Djhi)
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Bayes TheoremDoes patient have cancer or not?A patient takes a lab test and the resultcomes back positive. The test returns acorrect positive result in only 98% of thecases in which the disease is actually present,and a correct negative result in only 97% ofthe cases in which the disease is not present.Furthermore, :008 of the entire populationhave this cancer.P (cancer) = P (:cancer) =P (+jcancer) = P (�jcancer) =P (+j:cancer) = P (�j:cancer) =
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Basic Formulas for Probabilities� Product Rule: probability P (A ^ B) of aconjunction of two events A and B:P (A ^ B) = P (AjB)P (B) = P (BjA)P (A)� Sum Rule: probability of a disjunction of twoevents A and B:P (A _B) = P (A) + P (B) � P (A ^B)� Theorem of total probability: if events A1; : : : ; Anare mutually exclusive with Pni=1P (Ai) = 1, thenP (B) = nXi=1P (BjAi)P (Ai)
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Brute Force MAP Hypothesis Learner1. For each hypothesis h in H, calculate theposterior probabilityP (hjD) = P (Djh)P (h)P (D)2. Output the hypothesis hMAP with the highestposterior probabilityhMAP = argmaxh2H P (hjD)
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Relation to Concept LearningConsider our usual concept learning task� instance space X, hypothesis space H, trainingexamples D� consider the FindS learning algorithm (outputsmost speci�c hypothesis from the version spaceV SH;D)What would Bayes rule produce as the MAPhypothesis?Does FindS output a MAP hypothesis??
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Relation to Concept LearningAssume �xed set of instances hx1; : : : ; xmiAssume D is the set of classi�cationsD = hc(x1); : : : ; c(xm)iChoose P (Djh):
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Relation to Concept LearningAssume �xed set of instances hx1; : : : ; xmiAssume D is the set of classi�cationsD = hc(x1); : : : ; c(xm)iChoose P (Djh)� P (Djh) = 1 if h consistent with D� P (Djh) = 0 otherwiseChoose P (h) to be uniform distribution� P (h) = 1jHj for all h in HThen,P (hjD) = 8>>>>>>><>>>>>>>: 1jV SH;Dj if h is consistent with D0 otherwise
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Evolution of Posterior Probabilities
hypotheses hypotheses hypotheses

P(h|D1,D2)P(h|D1)P h)(

a( ) b( ) c( )
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Characterizing Learning Algorithms byEquivalent MAP Learners
Inductive system

Output hypotheses

Output hypotheses

Brute force
MAP learner

Candidate
Elimination
Algorithm 

Prior assumptions
 made explicit

P(h) uniform
P(D|h) = 0 if inconsistent,
            = 1 if consistent

Equivalent Bayesian inference system

Training examples D

Hypothesis space H 

Hypothesis space H 

Training examples D
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Learning A Real Valued Function
hML

f

e

y

xConsider any real-valued target function fTraining examples hxi; dii, where di is noisytraining value� di = f(xi) + ei� ei is random variable (noise) drawnindependently for each xi according to someGaussian distribution with mean=0Then the maximum likelihood hypothesis hML isthe one that minimizes the sum of squared errors:hML = argminh2H mXi=1 (di � h(xi))2137 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997



Learning A Real Valued FunctionhML = argmaxh2H p(Djh)= argmaxh2H mYi=1 p(dijh)= argmaxh2H mYi=1 1p2��2e�12(di�h(xi)� )2Maximize natural log of this instead...hML = argmaxh2H mXi=1 ln 1p2��2 � 12 0BB@di � h(xi)� 1CCA2= argmaxh2H mXi=1�12 0BB@di � h(xi)� 1CCA2= argmaxh2H mXi=1� (di� h(xi))2= argminh2H mXi=1 (di� h(xi))2
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Learning to Predict ProbabilitiesConsider predicting survival probability frompatient dataTraining examples hxi; dii, where di is 1 or 0Want to train neural network to output aprobability given xi (not a 0 or 1)In this case can showhML = argmaxh2H mXi=1 di lnh(xi) + (1� di) ln(1� h(xi))Weight update rule for a sigmoid unit:wjk  wjk +�wjkwhere �wjk = � mXi=1(di � h(xi)) xijk
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Minimum Description Length PrincipleOccam's razor: prefer the shortest hypothesisMDL: prefer the hypothesis h that minimizeshMDL = argminh2H LC1(h) + LC2(Djh)where LC(x) is the description length of x underencoding CExample: H = decision trees, D = training datalabels� LC1(h) is # bits to describe tree h� LC2(Djh) is # bits to describe D given h{ Note LC2(Djh) = 0 if examples classi�edperfectly by h. Need only describe exceptions� Hence hMDL trades o� tree size for trainingerrors140 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997



Minimum Description Length PrinciplehMAP = argmaxh2H P (Djh)P (h)= argmaxh2H log2 P (Djh) + log2P (h)= argminh2H � log2P (Djh) � log2P (h) (1)Interesting fact from information theory:The optimal (shortest expected codinglength) code for an event with probability p is� log2 p bits.So interpret (1):� � log2 P (h) is length of h under optimal code� � log2 P (Djh) is length of D given h underoptimal code! prefer the hypothesis that minimizeslength(h) + length(misclassifications)
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Most Probable Classi�cation of New InstancesSo far we've sought the most probable hypothesisgiven the data D (i.e., hMAP)Given new instance x, what is its most probableclassi�cation?� hMAP(x) is not the most probable classi�cation!Consider:� Three possible hypotheses:P (h1jD) = :4; P (h2jD) = :3; P (h3jD) = :3� Given new instance x,h1(x) = +; h2(x) = �; h3(x) = ��What's most probable classi�cation of x?
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Bayes Optimal Classi�erBayes optimal classi�cation:argmaxvj2V Xhi2H P (vjjhi)P (hijD)Example:P (h1jD) = :4; P (�jh1) = 0; P (+jh1) = 1P (h2jD) = :3; P (�jh2) = 1; P (+jh2) = 0P (h3jD) = :3; P (�jh3) = 1; P (+jh3) = 0therefore Xhi2H P (+jhi)P (hijD) = :4Xhi2H P (�jhi)P (hijD) = :6and argmaxvj2V Xhi2H P (vjjhi)P (hijD) = �
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Gibbs Classi�erBayes optimal classi�er provides best result, butcan be expensive if many hypotheses.Gibbs algorithm:1. Choose one hypothesis at random, according toP (hjD)2. Use this to classify new instanceSurprising fact: Assume target concepts are drawnat random from H according to priors on H. Then:E[errorGibbs] � 2E[errorBayesOptimal]Suppose correct, uniform prior distribution over H,then� Pick any hypothesis from VS, with uniformprobability� Its expected error no worse than twice Bayesoptimal144 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997



Naive Bayes Classi�erAlong with decision trees, neural networks, nearestnbr, one of the most practical learning methods.When to use�Moderate or large training set available� Attributes that describe instances areconditionally independent given classi�cationSuccessful applications:� Diagnosis� Classifying text documents
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Naive Bayes Classi�erAssume target function f : X ! V , where eachinstance x described by attributes ha1; a2 : : : ani.Most probable value of f(x) is:vMAP = argmaxvj2V P (vjja1; a2 : : : an)vMAP = argmaxvj2V P (a1; a2 : : : anjvj)P (vj)P (a1; a2 : : : an)= argmaxvj2V P (a1; a2 : : : anjvj)P (vj)Naive Bayes assumption:P (a1; a2 : : : anjvj) = Yi P (aijvj)which givesNaive Bayes classi�er: vNB = argmaxvj2V P (vj)Yi P (aijvj)
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Naive Bayes AlgorithmNaive Bayes Learn(examples)For each target value vjP̂ (vj) estimate P (vj)For each attribute value ai of each attribute aP̂ (aijvj) estimate P (aijvj)Classify New Instance(x)vNB = argmaxvj2V P̂ (vj) Yai2x P̂ (aijvj)
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Naive Bayes: ExampleConsider PlayTennis again, and new instancehOutlk = sun; Temp = cool;Humid = high;Wind = strongiWant to compute:vNB = argmaxvj2V P (vj)Yi P (aijvj)P (y) P (sunjy) P (cooljy) P (highjy) P (strongjy) = :005P (n) P (sunjn) P (cooljn) P (highjn) P (strongjn) = :021! vNB = n
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Naive Bayes: Subtleties1. Conditional independence assumption is oftenviolated P (a1; a2 : : : anjvj) = Yi P (aijvj)� ...but it works surprisingly well anyway. Notedon't need estimated posteriors P̂ (vjjx) to becorrect; need only thatargmaxvj2V P̂ (vj)Yi P̂ (aijvj) = argmaxvj2V P (vj)P (a1 : : : ; anjvj)� see [Domingos & Pazzani, 1996] for analysis� Naive Bayes posteriors often unrealisticallyclose to 1 or 0
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Naive Bayes: Subtleties2. what if none of the training instances withtarget value vj have attribute value ai? ThenP̂ (aijvj) = 0, and...P̂ (vj)Yi P̂ (aijvj) = 0Typical solution is Bayesian estimate for P̂ (aijvj)P̂ (aijvj) nc+mpn+mwhere� n is number of training examples for whichv = vj,� nc number of examples for which v = vj anda = ai� p is prior estimate for P̂ (aijvj)�m is weight given to prior (i.e. number of\virtual" examples)150 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997



Learning to Classify TextWhy?� Learn which news articles are of interest� Learn to classify web pages by topicNaive Bayes is among most e�ective algorithmsWhat attributes shall we use to represent textdocuments??
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Learning to Classify TextTarget concept Interesting? : Document! f+;�g1. Represent each document by vector of words� one attribute per word position in document2. Learning: Use training examples to estimate� P (+)� P (�)� P (docj+)� P (docj�)Naive Bayes conditional independence assumptionP (docjvj) = length(doc)Yi=1 P (ai = wkjvj)where P (ai = wkjvj) is probability that word inposition i is wk, given vjone more assumption:P (ai = wkjvj) = P (am = wkjvj); 8i;m152 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997



Learn naive Bayes text(Examples; V )1. collect all words and other tokens that occur inExamples� V ocabulary  all distinct words and othertokens in Examples2. calculate the required P (vj) and P (wkjvj)probability terms� For each target value vj in V do{ docsj  subset of Examples for which thetarget value is vj{ P (vj) jdocsjjjExamplesj{ Textj  a single document created byconcatenating all members of docsj{ n total number of words in Textj (countingduplicate words multiple times){ for each word wk in V ocabulary� nk  number of times word wk occurs inTextj� P (wkjvj) nk+1n+jV ocabularyj153 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997



Classify naive Bayes text(Doc)� positions all word positions in Doc thatcontain tokens found in V ocabulary� Return vNB, wherevNB = argmaxvj2V P (vj) Yi2positionsP (aijvj)
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Twenty NewsGroupsGiven 1000 training documents from each groupLearn to classify new documents according towhich newsgroup it came fromcomp.graphics misc.forsalecomp.os.ms-windows.misc rec.autoscomp.sys.ibm.pc.hardware rec.motorcyclescomp.sys.mac.hardware rec.sport.baseballcomp.windows.x rec.sport.hockeyalt.atheism sci.spacesoc.religion.christian sci.crypttalk.religion.misc sci.electronicstalk.politics.mideast sci.medtalk.politics.misctalk.politics.gunsNaive Bayes: 89% classi�cation accuracy155 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997



Article from rec.sport.hockeyPath: cantaloupe.srv.cs.cmu.edu!das-news.harvard.edu!ogicse!uwm.eduFrom: xxx@yyy.zzz.edu (John Doe)Subject: Re: This year's biggest and worst (opinion)...Date: 5 Apr 93 09:53:39 GMTI can only comment on the Kings, but the mostobvious candidate for pleasant surprise is AlexZhitnik. He came highly touted as a defensivedefenseman, but he's clearly much more than that.Great skater and hard shot (though wish he weremore accurate). In fact, he pretty much allowedthe Kings to trade away that huge defensiveliability Paul Coffey. Kelly Hrudey is only thebiggest disappointment if you thought he was anygood to begin with. But, at best, he's only amediocre goaltender. A better choice would beTomas Sandstrom, though not through any fault ofhis own, but because some thugs in Toronto decided156 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997
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Bayesian Belief NetworksInteresting because:� Naive Bayes assumption of conditionalindependence too restrictive� But it's intractable without some suchassumptions...� Bayesian Belief networks describe conditionalindependence among subsets of variables! allows combining prior knowledge about(in)dependencies among variables with observedtraining data(also called Bayes Nets)
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Conditional IndependenceDe�nition: X is conditionally independent ofY given Z if the probability distributiongoverning X is independent of the value of Ygiven the value of Z; that is, if(8xi; yj; zk) P (X = xijY = yj; Z = zk) = P (X = xijZ = zk)more compactly, we writeP (XjY; Z) = P (XjZ)Example: Thunder is conditionally independent ofRain, given LightningP (ThunderjRain; Lightning) = P (ThunderjLightning)Naive Bayes uses cond. indep. to justifyP (X; Y jZ) = P (XjY; Z)P (Y jZ)= P (XjZ)P (Y jZ)159 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997



Bayesian Belief Network
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Network represents a set of conditionalindependence assertions:� Each node is asserted to be conditionallyindependent of its nondescendants, given itsimmediate predecessors.� Directed acyclic graph
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Bayesian Belief Network
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Represents joint probability distribution over allvariables� e.g., P (Storm;BusTourGroup; : : : ; ForestF ire)� in general,P (y1; : : : ; yn) = nYi=1P (yijParents(Yi))where Parents(Yi) denotes immediatepredecessors of Yi in graph� so, joint distribution is fully de�ned by graph,plus the P (yijParents(Yi))161 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997



Inference in Bayesian NetworksHow can one infer the (probabilities of) values ofone or more network variables, given observedvalues of others?� Bayes net contains all information needed forthis inference� If only one variable with unknown value, easy toinfer it� In general case, problem is NP hardIn practice, can succeed in many cases� Exact inference methods work well for somenetwork structures�Monte Carlo methods \simulate" the networkrandomly to calculate approximate solutions
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Learning of Bayesian NetworksSeveral variants of this learning task� Network structure might be known or unknown� Training examples might provide values of allnetwork variables, or just someIf structure known and observe all variables� Then it's easy as training a Naive Bayes classi�er
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Learning Bayes NetsSuppose structure known, variables partiallyobservablee.g., observe ForestFire, Storm, BusTourGroup,Thunder, but not Lightning, Camp�re...� Similar to training neural network with hiddenunits� In fact, can learn network conditionalprobability tables using gradient ascent!� Converge to network h that (locally) maximizesP (Djh)
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Gradient Ascent for Bayes NetsLet wijk denote one entry in the conditionalprobability table for variable Yi in the networkwijk = P (Yi = yijjParents(Yi) = the list uik of values)e.g., if Yi = Campfire, then uik might behStorm = T;BusTourGroup = F iPerform gradient ascent by repeatedly1. update all wijk using training data Dwijk  wijk + � Xd2D Ph(yij; uikjd)wijk2. then, renormalize the wijk to assure� Pj wijk = 1� 0 � wijk � 1
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More on Learning Bayes NetsEM algorithm can also be used. Repeatedly:1. Calculate probabilities of unobserved variables,assuming h2. Calculate new wijk to maximize E[lnP (Djh)]where D now includes both observed and(calculated probabilities of) unobserved variablesWhen structure unknown...� Algorithms use greedy search to add/substractedges and nodes� Active research topic
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Summary: Bayesian Belief Networks
� Combine prior knowledge with observed data� Impact of prior knowledge (when correct!) is tolower the sample complexity� Active research area{ Extend from boolean to real-valued variables{ Parameterized distributions instead of tables{ Extend to �rst-order instead of propositionalsystems{More e�ective inference methods{ ...
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Expectation Maximization (EM)When to use:� Data is only partially observable� Unsupervised clustering (target valueunobservable)� Supervised learning (some instance attributesunobservable)Some uses:� Train Bayesian Belief Networks� Unsupervised clustering (AUTOCLASS)� Learning Hidden Markov Models
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Generating Data from Mixture of kGaussians
p(

x)

xEach instance x generated by1. Choosing one of the k Gaussians with uniformprobability2. Generating an instance at random according tothat Gaussian
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EM for Estimating k MeansGiven:� Instances from X generated by mixture of kGaussian distributions� Unknown means h�1; : : : ; �ki of the k Gaussians� Don't know which instance xi was generated bywhich GaussianDetermine:�Maximum likelihood estimates of h�1; : : : ; �kiThink of full description of each instance asyi = hxi; zi1; zi2i, where� zij is 1 if xi generated by jth Gaussian� xi observable� zij unobservable170 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997



EM for Estimating k MeansEM Algorithm: Pick random initial h = h�1; �2i,then iterateE step: Calculate the expected value E[zij] of eachhidden variable zij, assuming the currenthypothesis h = h�1; �2i holds.E[zij] = p(x = xij� = �j)P2n=1 p(x = xij� = �n)= e� 12�2 (xi��j)2P2n=1 e� 12�2 (xi��n)2M step: Calculate a new maximum likelihood hypothesish0 = h�01; �02i, assuming the value taken on byeach hidden variable zij is its expected valueE[zij] calculated above. Replace h = h�1; �2i byh0 = h�01; �02i. �j  Pmi=1E[zij] xiPmi=1E[zij]171 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997



EM AlgorithmConverges to local maximum likelihood hand provides estimates of hidden variables zijIn fact, local maximum in E[lnP (Y jh)]� Y is complete (observable plus unobservablevariables) data� Expected value is taken over possible values ofunobserved variables in Y
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General EM ProblemGiven:� Observed data X = fx1; : : : ; xmg� Unobserved data Z = fz1; : : : ; zmg� Parameterized probability distribution P (Y jh),where{ Y = fy1; : : : ; ymg is the full data yi = xi [ zi{ h are the parametersDetermine:� h that (locally) maximizes E[lnP (Y jh)]Many uses:� Train Bayesian belief networks� Unsupervised clustering (e.g., k means)� Hidden Markov Models173 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997



General EM MethodDe�ne likelihood function Q(h0jh) which calculatesY = X [ Z using observed X and currentparameters h to estimate ZQ(h0jh) E[lnP (Y jh0)jh;X]EM Algorithm:Estimation (E) step: Calculate Q(h0jh) using thecurrent hypothesis h and the observed data X toestimate the probability distribution over Y .Q(h0jh) E[lnP (Y jh0)jh;X]Maximization (M) step: Replace hypothesis h bythe hypothesis h0 that maximizes this Qfunction. h argmaxh0 Q(h0jh)
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