Computational Learning Theory

[read Chapter 7]
[Suggested exercises: 7.1, 7.2, 7.5, 7.8|

e Computational learning theory
e Setting 1: learner poses queries to teacher
e Setting 2: teacher chooses examples

e Setting 3: randomly generated instances, labeled
by teacher

e Probably approximately correct (PAC) learning
e Vapnik-Chervonenkis Dimension

e Mistake bounds
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Computational Learning Theory

What general laws constrain inductive learning?

We seek theory to relate:
e Probability of successtul learning
e Number of training examples
e Complexity of hypothesis space

e Accuracy to which target concept is
approximated

e Manner in which training examples presented
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Prototypical Concept Learning Task

e Given:

— Instances X: Possible days, each described by
the attributes Sky, AwrTemp, Humidity,
Wind, Water, Forecast

— Target function ¢: EnjoySport : X — {0, 1}
— Hypotheses H: Conjunctions of literals. E.g.
(7,Cold,High,?,7,7).
— Training examples D: Positive and negative
examples of the target function
(x1,¢(1)), .. Az, c(z))
e Determine:

— A hypothesis h in H such that h(z) = ¢(x) for
all x in D?

— A hypothesis h in H such that h(z) = ¢(x) for
all x in X7
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Sample Complexity

How many training examples are sufficient to learn
the target concept?

1. If learner proposes instances, as queries to
teacher

e Learner proposes instance x, teacher provides
c(x)
2. If teacher (who knows ¢) provides training
examples

e teacher provides sequence of examples of form
(z, c(x))

3. If some random process (e.g., nature) proposes
instances

e instance x generated randomly, teacher
provides ¢(x)
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Sample Complexity: 1

Learner proposes instance x, teacher provides ¢(x)
(assume c is in learner’s hypothesis space H)

Optimal query strategy: play 20 questions

e pick instance x such that half of hypotheses in
VS classify x positive, half classify x negative

e When this is possible, need [log, |H|]| queries to
learn c

e when not possible, need even more
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Sample Complexity: 2

Teacher (who knows ¢) provides training examples
(assume c is in learner’s hypothesis space H)

Optimal teaching strategy: depends on H used by
learner

Consider the case H = conjunctions of up to n
boolean literals and their negations

e.g., (AirTemp = Warm) A (Wind = Strong),
where AirTemp, Wind, ... each have 2 possible
values.

e if n possible boolean attributes in H, n + 1
examples suffice

o why?
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Sample Complexity: 3

Given:
e set of instances X
e set of hypotheses H
e set of possible target concepts C

e training instances generated by a fixed, unknown
probability distribution D over X

Learner observes a sequence D of training examples
of form (z, ¢(x)), for some target concept ¢ € C

e instances x are drawn from distribution D
e teacher provides target value ¢(x) for each
Learner must output a hypothesis h estimating c

e h is evaluated by its performance on subsequent
instances drawn according to D

Note: randomly drawn instances, noise-free
classifications
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True Error of a Hypothesis

Instance space X

Where ¢
and h disagree

Definition: The true error (denoted
errorp(h)) of hypothesis h with respect to
target concept ¢ and distribution D is the
probability that A will misclassify an instance
drawn at random according to D.

errorp(h) = xfe’lr)[c(a:) # h(x)]
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Two Notions of Error

Training error of hypothesis h with respect to
target concept c

e How often h(x) # c(x) over training instances

True error of hypothesis h with respect to ¢

e How often h(x) # c(x) over future random
instances

Our concern:

e Can we bound the true error of h given the
training error of h?

e First consider when training error of h is zero

(i.e., h € VSHJ))
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Exhausting the Version Space

Hypothesis space H

. error =3
eror=.1 r=.4
. error=.2
error =.3 r=.3
r=1

(r = training error, error = true error)

Definition: The version space V.S p is said
to be e-exhausted with respect to c and D, if
every hypothesis I in V .Sy p has error less
than € with respect to ¢ and D.

(Vh € VSg.p) errorp(h) < €
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How many examples will e-exhaust the VS?

Theorem: [Haussler, 1988].

If the hypothesis space H is finite, and D is a
sequence of m > 1 independent random
examples of some target concept ¢, then for
any 0 < e <1, the probability that the
version space with respect to H and D is not
e-exhausted (with respect to ¢) is less than

|H|e—€m

Interesting! This bounds the probability that any
consistent learner will output a hypothesis A with
error(h) > €

If we want to this probability to be below ¢
|H|e™ " <6
then
m > 1<1n H| + In(1/6))
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Learning Conjunctions of Boolean
Literals

How many examples are sufficient to assure with
probability at least (1 — ¢) that

every h in V .Sy p satisfies errorp(h) < e

Use our theorem:
1
m > —(In |H| + 1n(1/9))
€

Suppose H contains conjunctions of constraints on

up to n boolean attributes (i.e., n boolean literals).
Then |H| = 3", and

m > 1<1n 3" 4 In(1/6))

or

m > 1<n In3 -+ In(1/5))
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How About EnjoySport?

1
m > —(In |H| + 1n(1/9))
€
If H is as given in EnjoySport then |H| = 973, and

m > 1(1n 973 + In(1/6))

. if want to assure that with probability 95%, V'S
contains only hypotheses with errorp(h) < .1, then
it is sufficient to have m examples, where

1
m > —1(1n 973 + In(1/.05))

m > 10(In 973 + In 20)
m > 10(6.88 + 3.00)
m > 98.8
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PAC Learning

Consider a class C' of possible target concepts
defined over a set of instances X of length n, and a
learner L using hypothesis space H.

Definition: C' is PAC-learnable by L using
H if for all ¢ € C, distributions D over X, €
such that 0 < € < 1/2, and § such that
0<d<1/2,

learner L will with probability at least (1 — d)
output a hypothesis h € H such that
errorp(h) < €, in time that is polynomial in
1/e, 1/, n and size(c).
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Agnostic Learning

So far, assumed c € H
Agnostic learning setting: don’t assume ¢ € H
e What do we want then?

— The hypothesis h that makes fewest errors on
training data

e What is sample complexity in this case?

m > 21€2<1n H| + In(1/6))

derived from Hoeffding bounds:

Prlerrorp(h) > errorp(h) + €] < e 2me
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Shattering a Set of Instances

Definition: a dichotomy of a set S is a
partition of S into two disjoint subsets.

Definition: a set of instances S is shattered
by hypothesis space H if and only if for every
dichotomy of S there exists some hypothesis
in H consistent with this dichotomy.
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Three Instances Shattered

Instance space X

N0

/
O
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The Vapnik-Chervonenkis Dimen-
sion

Definition: The Vapnik-Chervonenkis
dimension, VC(H), of hypothesis space H
defined over instance space X is the size of
the largest finite subset of X shattered by H.
If arbitrarily large finite sets of X can be
shattered by H, then VC(H) = co.
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VC Dim. of Linear Decision Surfaces

@ ©
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Sample Complexity from VC Dimen-
sion

How many randomly drawn examples suffice to
e-exhaust V .Sy p with probability at least (1 —6)?

m > 1(4 log,(2/8) + SVC(H) log,(13/e€))

194 lecture slides for textbook Machine Learning, (©Tom M. Mitchell, McGraw Hill, 1997



Mistake Bounds

So far: how many examples needed to learn?

What about: how many mistakes before
convergence?

Let’s consider similar setting to PAC learning;:

e Instances drawn at random from X according to
distribution D

e Learner must classify each instance before
receiving correct classification from teacher

e Can we bound the number of mistakes learner
makes before converging?
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Mistake Bounds: Find-S

Consider Find-S when H = conjunction of boolean
literals

FIND-S:

e Initialize h to the most specific hypothesis
L=l NN L, AN,
e For each positive training instance x

— Remove from h any literal that is not
satisfied by «x

e OQutput hypothesis A.

How many mistakes before converging to correct h?
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Mistake Bounds: Halving Algorithm

Consider the Halving Algorithm:

e Learn concept using version space
CANDIDATE-ELIMINATION algorithm

e Classify new instances by majority vote of
version space members

How many mistakes before converging to correct h?
e ... in worst case?

e ... in best case?
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Optimal Mistake Bounds

Let M4(C') be the max number of mistakes made
by algorithm A to learn concepts in C'. (maximum
over all possible ¢ € C', and all possible training
sequences)

M4(C) = max M 4(c)

Definition: Let C be an arbitrary non-empty
concept class. The optimal mistake bound for
C', denoted Opt(C), is the minimum over all
possible learning algorithms A of M4(C).

Opt(C) = min M 4(C)

A€learning algorithms

VC(C) < O0pt(C) < MHaning(C) < loga(|C).
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